In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production.
Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host defense in the gut and are under influence of the intestinal microbiome. Microbial metabolites and dietary components, including short chain fatty acids (acetate, propionate, and butyrate, SCFAs), have an impact on the physiology of IECs at multiple levels, including the inhibition of deacetylases affecting chromatin remodeling and global changes in transcriptional activity. The number and diversity of butyrate-producing bacteria is subject to factors related to age, disease, and to diet. At physiological levels, SCFAs are inhibitors of histone deacetylases (HDACs) which may explain the transcriptional effects of SCFAs on epithelial cells, although many effects of SCFAs on colonic mucosa can be ascribed to mechanisms beyond HDAC inhibition. Interference with this type of post-translational modification has great potential in cancer and different inflammatory diseases, because HDAC inhibition has anti-proliferative and anti-inflammatory effects in vitro, and in in vivo models of intestinal inflammation. Hence, the influence of dietary modulators on HDAC activity in epithelia is likely to be an important determinant of its responses to inflammatory and microbial challenges.
Transcription of inflammatory genes is tightly regulated by acetylation and deacetylation of histone tails. An inhibitor of the acetylated-lysine reader bromodomain and extra-terminal domain (BET) proteins, I-BET151, is known to counteract the induction of expression of inflammatory genes in macrophages. We have investigated the effects of I-BET151 on dendritic cell function, including expression of co-stimulatory molecules and cytokines, and capacity for T cell activation. Treatment of mouse bone marrow derived dendritic cells (BMDC) and human monocyte derived DCs (mdDC) with I-BET151 reduced LPS-induced expression of co-stimulatory molecules, as well as the production of multiple cyokines and chemokines. Most strikingly, secretion of IL-6, IL-12 and IL-10 was significantly reduced to 89.7%, 99.9% and 98.6% respectively of that produced by control cells. I-BET151-treated mdDC showed a reduced ability to stimulate proliferation of autologous Revaxis-specific T cells. Moreover, while I-BET151 treatment of BMDC did not affect their ability to polarise ovalbumin specific CD4 CD62L naive T cells towards Th1, Th2, or Th17 phenotypes, an increase in Foxp3 expressing Tregs secreting higher IL-10 levels was observed. Suppression assays demonstrated that Tregs generated in response to I-BET151-treated BMDC displayed anti-proliferative capacity. Finally, evidence that I-BET151 treatment can ameliorate inflammation in vivo in a T cell dependent colitis model is shown. Overall, these results demonstrate marked effects of BET inhibition on DC maturation, reducing their capacity for pro-inflammatory cytokine secretion and T cell activation and enhancing the potential of DC to induce Foxp3 expressing Treg with suppressive properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.