Acute phase proteins (APP) were first identified in the early 1900s as early reactants to infectious disease. They are now understood to be an integral part of the acute phase response (APR) which is the cornerstone of innate immunity. APP have been shown to be valuable biomarkers as increases can occur with inflammation, infection, neoplasia, stress, and trauma. All animals--from fish to mammals--have demonstrable APP, but the type of major APP differs by species. While the primary application of these proteins in a clinical setting is prognostication, studies in animals have demonstrated relevance to diagnosis and detection and monitoring for subclinical disease. APP have been well documented in laboratory, companion, and large animals. With the advent of standardized and automated assays, these biomarkers are available for use in all fields of veterinary medicine as well as basic and clinical research.
Context: An abundance of clinical reports focused on specific laboratory parameters have been reported on COVID-19, but a systematic analysis synthesizing these findings has not been performed. Objective: To review and summarize the current available literature on the predictive role of various biomarkers in COVID-19 patients. Data Sources: A literature search was performed using databases including PubMed, medRxiv, and bioRxiv. A total of 72 papers were reviewed including 54 peer reviewed papers and 18 non-peer reviewed preprints. Conclusions: While non-specific, acute phase reactants including CRP, ferritin, SAA, and procalcitonin were reported as sensitive markers of acute COVID-19 disease. Significantly elevated WBC count, marked lymphopenia, decreased CD3, CD4 or CD8 T-lymphocyte counts, high neutrophil count, thrombocytopenia, and markedly elevated inflammatory biomarkers were associated with severe disease and the risk of developing sepsis with rapid progression. Trends observed by serial laboratory measurements during hospitalization including progressive decrease of lymphocyte count, thrombocytopenia, elevated CRP, procalcitonin, increased liver enzymes, decreased renal function, and coagulation derangements were more common in critically ill patient groups and associated with a high incidence of clinical complications. Elevated IL-6 level and markedly increased SAA were most often reported in severely and critically ill patients. Indicators of systemic inflammation such as neutrophil-lymphocyte ratio (NLR), systemic immune-inflammation (SII) index or COVID-19 Severity Score may be utilized to predict disease severity, outcome, and mortality. Interpretation of the data reported in the studies reviewed here is limited due to study design (mostly retrospective), limited sample size, and a lack of defined clinical criteria.
ABSTRACT:The health status of 83 loggerhead sea turtles (Caretta caretta; 39 foraging, 31 nesting, and 13 stranded turtles) was analyzed using physical examinations, hematology, plasma biochemistry, plasma protein electrophoresis, and toxicologic parameters. Significant differences were noted in a number of health parameters between turtles exhibiting each of these behaviors. On physical examinations, stranded turtles had the highest prevalence of heavy carapace epibiont loads, miscellaneous abnormalities, emaciation, and weakness. Differences in hematologic values included a lower packed cell volume, higher number of lymphocytes, and lower number of monocytes in stranded turtles; lower white blood cell counts in foraging turtles; and significant differences in total solid values among turtles exhibiting all behaviors with the lowest values in stranded turtles and the highest values in nesting turtles. Differences in plasma biochemistry values included the highest uric acid, creatine kinase, and CO 2 values in stranded turtles; the highest glucose and potassium values in foraging turtles; and the highest cholesterol and triglyceride values, and lowest alanine aminotransferase, in nesting turtles. Differences in total protein, albumin, and globulin were found using plasma biochemistry values, with lowest values in stranded turtles and highest values in nesting females, whereas differences in blood urea nitrogen between turtles included the lowest values in nesting turtles and the highest in foraging turtles. Plasma organochlorine and polychlorinated biphenyl levels were below their limits of quantification in the 39 foraging, 11 nesting, and three stranded turtles tested. A statistically significant difference was noted in the level of whole blood mercury between the 23 foraging and 12 nesting turtles tested. There was no difference in arsenic or lead levels between turtles exhibiting any of the three behaviors. Although a few limitations exist with the present study and include unknown ambient temperatures, turtle handling times that varied from 15 min to 53 min per turtle, and the use of a different laboratory for processing complete blood counts and plasma biochemistries in stranded versus foraging and nesting turtles, we provide baseline blood values for two cohorts (foraging and nesting) of loggerhead sea turtles on the coast of Georgia. Additionally, we demonstrate significant differences in clinical findings and blood parameters between foraging, nesting, and stranded loggerhead turtles in the region.
Objectives To examine and summarize the current literature on serologic methods for the detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods A literature review was performed using searches in databases including PubMed, medRxiv, and bioRxiv. Thirty-two peer-reviewed papers and 23 preprints were examined. Results The studies included lateral flow immunoassay, enzyme-linked immunosorbent assay, chemiluminescence immunoassay, and neutralizing antibody assays. The use of all major SARS-CoV-2 antigens was demonstrated to have diagnostic value. Assays measuring total antibody reactivity had the highest sensitivity. In addition, all the methods provided opportunities to characterize the humoral immune response by isotype. The combined use of IgM and IgG detection resulted in a higher sensitivity than that observed when detecting either isotype alone. Although IgA was rarely studied, it was also demonstrated to be a sensitive marker of infection, and levels correlated with disease severity and neutralizing activity. Conclusions The use of serologic testing, in conjunction with reverse transcription polymerase chain reaction testing, was demonstrated to significantly increase the sensitivity of detection of patients infected with SARS-CoV-2. There was conflicting evidence regarding whether antibody titers correlated with clinical severity. However, preliminary investigations indicated some immunoassays may be a surrogate for the prediction of neutralizing antibody titers and the selection of recovered patients for convalescent serum donation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.