Animal studies have shown that cerebellar projections influence both excitatory and inhibitory neurones in the motor cortex but this connectivity has yet to be demonstrated in human subjects. In human subjects, magnetic or electrical stimulation of the cerebellum 5-7 ms before transcranial magnetic stimulation (TMS) of the motor cortex decreases the TMSinduced motor-evoked potential (MEP), indicating a cerebellar inhibition of the motor cortex (CBI). TMS also reveals inhibitory and excitatory circuits of the motor cortex, including a short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF). This study used magnetic cerebellar stimulation to investigate connections between the cerebellum and these cortical circuits. Three experiments were performed on 11 subjects. The first experiment showed that with increasing test stimulus intensities, LICI, CBI and ICF decreased, while SICI increased. The second experiment showed that the presence of CBI reduced SICI and increased ICF. The third experiment showed that the interaction between CBI and LICI reduced CBI. Collectively, these findings suggest that cerebellar stimulation results in changes to both inhibitory and excitatory neurones in the human motor cortex.
Experimental models of Parkinson's disease have demonstrated abnormal synaptic plasticity in the corticostriatal system, possibly related to the development of levodopa-induced dyskinesias (LID). We tested the hypothesis that LID in Parkinson's disease is associated with aberrant plasticity in the human motor cortex (M1). We employed the paired associative stimulation (PAS) protocol, an experimental intervention involving transcranial magnetic stimulation (TMS) and median nerve stimulation capable of producing long-term potentiation (LTP) like changes in the sensorimotor system in humans. We studied the more affected side of 16 moderately affected patients with Parkinson's disease (9 dyskinetic, 7 non-dyskinetic) and the dominant side of 9 age-matched healthy controls. Motor-evoked potential (MEP) amplitudes and cortical silent period (CSP) duration were measured at baseline before PAS and for up to 60 min (T0, T30 and T60) after PAS in abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles. PAS significantly increased MEP size in controls (+74.8% of baseline at T30) but not in patients off medication (T30: +0.07% of baseline in the non-dyskinetic, +27% in the dyskinetic group). Levodopa restored the potentiation of MEP amplitudes by PAS in the non-dyskinetic group (T30: +64.9% of baseline MEP) but not in the dyskinetic group (T30: -9.2% of baseline). PAS prolonged CSP duration in controls. There was a trend towards prolongation of CSP in the non-dyskinetic group off medications but not in the dyskinetic group. Levodopa did not restore CSP prolongation by PAS in the dyskinetic group. Our findings suggest that LTP-like plasticity is deficient in Parkinson's disease off medications and is restored by levodopa in non-dyskinetic but not in dyskinetic patients. Abnormal synaptic plasticity in the motor cortex may play a role in the development of LID.
Sensory abnormalities have been reported in Parkinson's disease and may contribute to the motor deficits. Peripheral sensory stimulation inhibits the motor cortex, and the effects depend on the interstimulus interval (ISI) between the sensory stimulus and transcranial magnetic stimulation (TMS) to the motor cortex. Short latency afferent inhibition (SAI) occurs at an ISI of approximately 20 ms, and long latency afferent inhibition (LAI) at an ISI of approximately 200 ms. We studied SAI and LAI in 10 Parkinson's disease patients with the aim of assessing whether sensorimotor processing is altered in Parkinson's disease. Patients were studied on and off medication, and the findings were compared with 10 age-matched controls. Median nerve and middle finger stimulation were delivered 20-600 ms before TMS to the contralateral motor cortex. The motor evoked potentials were recorded from the relaxed first dorsal interosseous (FDI) muscle. SAI was normal in Parkinson's disease patients off dopaminergic medications, but it was reduced on the more affected side in Parkinson's disease patients on medication. LAI was reduced in Parkinson's disease patients compared with controls independent of their medication status. LAI reduced long interval intracortical inhibition in normal subjects but not in Parkinson's disease patients. The different results for SAI and LAI indicate that it is likely that separate mechanisms mediate these two forms of afferent inhibition. SAI probably represents the direct interaction of a sensory signal with the motor cortex. This pathway is unaffected by Parkinson's disease but is altered by dopaminergic medication in Parkinson's disease patients and may contribute to the side effects of dopaminergic drugs. LAI probably involves other pathways such as the basal ganglia or cortical association areas. This defective sensorimotor integration may be a non-dopaminergic manifestation of Parkinson's disease.
Interhemispheric inhibition (IHI) refers to the neurophysiological mechanism in which one hemisphere of the brain inhibits the opposite hemisphere. IHI can be studied by transcranial magnetic stimulation using a conditioning-test paradigm. We investigated IHI from 5 motor related cortical areas in the right hemisphere to the left primary motor cortex (M1). These areas are hand and face representations of M1, dorsal premotor cortex, somatosensory cortex, and dorsolateral prefrontal cortex. Test stimulus was delivered to the left M1 and conditioning stimulus (CS) was delivered to one of 5 motor related cortical areas in the right hemisphere. The time course of IHI, effects of different CS intensities and current directions on IHI were tested. Maximum IHI was found at interstimulus intervals of approximately 10 ms (short latency IHI, SIHI) and approximately 50 ms (long latency IHI, LIHI) for the motor related areas tested. LIHI could be elicited over a wide range of CS intensities, whereas SIHI required higher CS intensities. We conclude that there are 2 distinct phases of IHI from motor related cortical areas to the opposite M1 through the corpus callosum, and they are mediated by different neuronal populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.