Nuclear migration and positioning within cells are critical for many developmental processes and are governed by the cytoskeletal network. Although mechanisms of nuclear-cytoskeletal attachment are unclear, growing evidence links a novel family of nuclear envelope (NE) proteins that share a conserved C-terminal SUN (Sad1/UNC-84 homology) domain. Analysis of Caenorhabditis elegans mutants has implicated UNC-84 in actin-mediated nuclear positioning by regulating NE anchoring of a giant actin-binding protein, ANC-1. Here, we report the identification of SUN1 as a lamin A-binding protein in a yeast two-hybrid screen. We demonstrate that SUN1 is an integral membrane protein located at the inner nuclear membrane. While the N-terminal domain of SUN1 is responsible for detergent-resistant association with the nuclear lamina and lamin A binding, lamin A/C expression is not required for SUN1 NE localization. Furthermore, SUN1 does not interact with type B lamins, suggesting that NE localization is ensured by binding to an additional nuclear component(s), most likely chromatin. Importantly, we find that the luminal C-terminal domain of SUN1 interacts with the mammalian ANC-1 homologs nesprins 1 and 2 via their conserved KASH domain. Our data provide evidence of a physical nuclear-cytoskeletal connection that is likely to be a key mechanism in nuclearcytoplasmic communication and regulation of nuclear position.The nuclear envelope (NE) is a double-membrane structure that separates chromatin from the cytoplasm, thereby allowing regulation of DNA replication and gene expression in eukaryotic cells. Nuclear pore complexes span the double membrane and regulate the passage of molecules between the cytoplasm and the nucleus (16). The outer nuclear membrane (ONM) is contiguous with, and biochemically similar to, the endoplasmic reticulum (ER). In contrast, the inner nuclear membrane (INM) contains a unique set of integral membrane proteins. Both nuclear pore complexes and INM proteins are anchored by association with the nuclear lamina, a network of lamin intermediate filaments that underlies the INM. The lamina, together with the associated INM proteins, provides structural support for the NE and sites for attachment of chromatin to the nuclear periphery (reviewed in reference 11).Most mammalian cells express two classes of lamin protein, types A and B (reviewed in reference 26). A-type lamins, the major isoforms of which are lamins A and C, are alternative splice products of the LMNA gene (8, 23). B-type lamins are mainly composed of lamins B1 and B2, which are encoded by separate genes (LMNB1 and LMNB2, respectively). A-and B-type lamins differ in their patterns of expression. While type B lamins are found in all nucleated somatic cells, type A lamins are absent in early embryos, their expression correlating with terminal differentiation (33). This has led to the suggestion that A-type lamins, although not essential for individual cell survival, are involved in determining differentiation patterns, possibly through effects on c...