fossil subduction interface records distributed de-10 formation across a 2+ km dominantly sedimentary shear zone. 11 • Subduction erosion of the overriding plate sourced ultramafic lenses, which were 12 subsequently entrained and underplated at depth. 13 • Periodic strain localization to the margins of km-scale ultramafic lenses facilitated 14 decoupling from the downgoing slab and underplating.
This article is a U.S. government work, and is not subject to copyright in the United States. CrossMark a r t i c l e i n f o b s t r a c tDesert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space. The results from the RATS tests allow selection of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although the metric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone.Published by Elsevier Ltd. on behalf of IAA.
Light propagating through atmospheric turbulence acquires spatial and temporal phase variations. For strong enough turbulence conditions, interference from these phase variations within the optical wave can produce branch points; positions of zero amplitude. Under the assumption of a layered turbulence model, our previous work has shown that these branch points can be used to estimate the number and velocities of atmospheric layers. Key to this previous demonstration was the property of branch point persistence. Branch points from a single turbulence layer persist in time and through additional layers. In this paper we extend persistence to include branch point pairs. We develop an algorithm for isolating persistent pairs and show that through experimental data that they exist through time and through additional turbulence.
Atmospheric turbulence imparts phase distortions on propagating optical waves. These distortions couple into amplitude fluctuations at the pupil of a telescope, which, for strong enough phase distortions, produce zeros in the amplitude called branch points. In our earlier work, we presented the case that branch points can be utilized as a source of information on the turbulent atmosphere. Using our bench-top data, we have demonstrated several properties of branch points including motion, density, persistence and separation. We have shown that the pupil plane motion of subsets of branch points scales to the velocities of atmospheric turbulence layers and identifies the number of branch point producing layers. We have identified empirical relationships for density and separation as functions of the strength and altitude for a single layer. All of this work has been done using a bench-top adaptive optics system utilizing a two-layer atmospheric turbulence simulator. In this paper, we use simulations to verify these previous results by showing that all of these branch point properties follow similar behaviors in independently anchored wave optics simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.