Epigenetic inheritance can result in plastic responses to changing environments being faithfully transmitted to offspring. However, it remains unclear how epigenetic mechanisms such as DNA methylation can contribute to multigenerational acclimation and adaptation to environmental stressors. Brook charr (
Salvelinus fontinalis
), an economically important salmonid, is highly sensitive to thermal stress and is of conservation concern in the context of climate change. We studied the effects of temperature during parental sexual maturation and offspring rearing on whole-genome DNA methylation in brook charr juveniles (fry). Parents were split between warm and cold temperatures during sexual maturation, mated in controlled breeding designs, then offspring from each family were split between warm (8°C) and cold (5°C) rearing environments. Using whole-genome bisulfite sequencing, we found 188 differentially methylated regions (DMRs) due to parental maturation temperature after controlling for family structure. By contrast, offspring rearing temperature had a negligible effect on offspring methylation. Stable intergenerational inheritance of DNA methylation and minimal plasticity in progeny could result in the transmission of acclimatory epigenetic states to offspring, priming them for a warming environment. Our findings have implications pertaining to the role of intergenerational epigenetic inheritance in response to ongoing climate change.
Natural selection has been studied for several decades, resulting in the computation of thousands of selection estimates. Although the importance of environmental conditions on selection has often been suggested, published estimates rarely take into account the effects of environmental heterogeneity on selection patterns. Here, we estimated linear and nonlinear viability selection gradients on morphological traits of 12‐day old nestlings in a wild population of tree swallows (Tachycineta bicolor) across a large‐scale heterogeneous study system in southern Québec, Canada. We assessed the environmental drivers of nestling survival and evaluated their effects on strength and direction of selection gradients. Separate analyses of environmental variables showed that high temperatures and heavy rainfall caused stronger positive linear selection on morphological traits. Weaker linear selection was also measured in more extensively cultivated areas. Both strength and shape of nonlinear quadratic and correlational components of selection were modified by environmental variables. Considering all environmental variables revealed that precipitation since hatching affected patterns of linear selection on traits, while temperatures since hatching shaped nonlinear selection patterns. Our study underlines the importance of quantifying linear and nonlinear natural selection under various environmental conditions and how the evolutionary response of traits may be affected by ongoing human‐induced environmental changes.
Epigenetic inheritance can result in plastic responses to changing environments being faithfully transmitted to offspring. However, it remains unclear how epigenetic mechanisms such as DNA methylation can contribute to multigenerational acclimation and adaptation to environmental stressors. Brook charr (Salvelinus fontinalis), an economically important salmonid, is highly sensitive to thermal stress, and is of conservation concern in the context of climate change. We studied the effects of temperature during parental sexual maturation and offspring rearing on whole-genome DNA methylation in brook charr juveniles (fry). Parents were split between warm and cold temperatures during sexual maturation, mated in controlled breeding designs, then offspring from each family were split between warm (8°C) and cold (5°C) rearing environments. We found 188 differentially methylated regions (DMRs) due to parental maturation temperature after controlling for family structure. In contrast, offspring rearing temperature had a negligible effect on offspring methylation. Stable intergenerational inheritance of DNA methylation and minimal plasticity in progeny could result in transmission of acclimatory epigenetic states to offspring, priming them for a warming environment. Our findings have implications pertaining to the role of intergenerational epigenetic inheritance in response to ongoing climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.