Little is known about the extent and serotypes of dengue viruses circulating in Africa. We evaluated the presence of dengue viremia during 4 years of surveillance (2014–2017) among children with febrile illness in Kenya. Acutely ill febrile children were recruited from 4 clinical sites in western and coastal Kenya, and 1,022 participant samples were tested by using a highly sensitive real-time reverse transcription PCR. A complete case analysis with genomic sequencing and phylogenetic analyses was conducted to characterize the presence of dengue viremia among participants during 2014–2017. Dengue viremia was detected in 41.9% (361/862) of outpatient children who had undifferentiated febrile illness in Kenya. Of children with confirmed dengue viremia, 51.5% (150/291) had malaria parasitemia. All 4 dengue virus serotypes were detected, and phylogenetic analyses showed several viruses from novel lineages. Our results suggests high levels of dengue virus infection among children with undifferentiated febrile illness in Kenya.
From 1975–2009, the WHO guidelines classified symptomatic dengue virus infections as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. In 2009 the case definition was changed to a clinical classification after concern the original criteria was challenging to apply in resource-limited settings and not inclusive of a substantial proportion of severe dengue cases. Our goal was to examine how well the current WHO definition identified new dengue cases at our febrile surveillance sites in Kenya. Between 2014 and 2019 as part of a child cohort study of febrile illness in our four clinical study sites (Ukunda, Kisumu, Msambweni, Chulaimbo) we identified 369 dengue PCR positive symptomatic cases and characterized whether they met the 2009 revised WHO diagnostic criteria for dengue with and without warning signs and severe dengue. We found 62% of our PCR-confirmed dengue cases did not meet criteria per the guidelines. Our findings also correlate with our experience that dengue disease in children in Kenya is less severe as reported in other parts of the world. Although the 2009 clinical classification has recently been criticized for being overly inclusive and non-specific, our findings suggest the 2009 WHO dengue case definition may miss more than 50% of symptomatic infections in Kenya and may require further modification to include the African experience.
Polyethene is a polyolefin produced from polymerization of the olefin ethylene (C2H4). It is one of the most commonly used plastic and one of the most resistant to degradation. Its accumulation in the surrounding has caught the attention of many governments and researchers with attempts to come up with better disposal methods. This review focused on the role played by microorganisms in the degradation of polyethene. The references reviewed were obtained from journals and databases including PubMed, Google Scholar (http: //scholar. google.com) and Science Direct (http://www.science direct.com). We focused on data published from 2010 up to 2021. The findings obtained indicated that 19 genera of bacteria and actinomycetes and 5 fungal genera have the ability to degrade polyethene through secretion of extracellular depolymerases. The enzymes cleave polymer chains into low molecular weight fragments, which are then assimilated through the microbial cell membrane and mineralized. Microbial degradation is a sustainable and promising idea. However, there is need for more research to clearly determine the mechanism of enzymatic degradation, which will be useful in the development of novel biotechnological tools for degradation of a variety of plastic materials by microorganisms.
Marine woodborers have a close association with tropical mangrove plants whereby they voraciously consume lignocellulose and play a role in nutrient cycling. They represent a rich source of potential lignocellulolytic enzymes that can be harnessed for conversion of biomass into simple sugars and other monomers for a variety of uses. Ligninolytic enzymes find applications in bio bleaching of pulp and decolouration of textile dyes, whereas cellulolytic and hemicellulolytic enzymes find applications in animal feed, manufacture of bread, bioethanol production and xylitol production among other uses. In this study, we obtained crude gut extracts from two marine woodborers, Dicyathifer mannii (Wright, 1866) and Sphaeroma terebrans (Bate, 1866), from three sampling sites along the Kenyan coast. Lignocellulolytic activities of the gut extracts were investigated in an effort to seek the species with the most lignocellulolytic efficacious extracts. Ligninolytic activities investigated were lignin peroxidase (LiP), manganese-dependent peroxidase (MnP) and laccase (Lac) or monophenol oxidase. Cellulolytic enzymes investigated were glucanases endoglucanase (endo-1-4-β-D-glucanase), exoglucanase (1,4-β-D-glucan-cellobiohydrolase), and β-D-glucosidase or cellobiase (β-D-glucoside glucanohydrolase). Endo-1-4-β-xylanase was investigated in the hydrolysis of xylan, the chief type of hemicellulose. D. mannii crude extracts showed an appreciable Lip activity of up to 34.65±0.116 U/L and endoglucanase (CMCase) activity of up to 50.7 U/ml (1 U represents the amount of enzyme which catalyzed the transformation of 1 micromol of substrate min -1 ). D. mannii is implicated as a source of these enzymes for industrial use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.