Identifying the causal genes that control complex trait variation remains challenging, limiting our appreciation of the evolutionary processes that influence polymorphisms in nature. We cloned a QTL that controls plant defensive chemistry, damage by insect herbivores, survival, and reproduction in the natural environments where this polymorphism evolved. These ecological effects are driven by duplications in the BCMA loci controlling this QTL and by two selectively favored amino acid changes in the glucosinolate-biosynthetic P450s that they encode. These changes cause a gain of novel enzyme function, modulated by allelic differences in catalytic rate and gene copy number. Ecological interactions in diverse environments likely contribute to the widespread polymorphism of this biochemical function.
Adaptive evolution is shaped by the interaction of population genetics, natural selection and underlying network and biochemical constraints. Variation created by mutation, the raw material for evolutionary change, is translated into phenotypes by flux through metabolic pathways and by the topography and dynamics of molecular networks. Finally, the retention of genetic variation and the efficacy of selection depend on population genetics and demographic history. Emergent high-throughput experimental methods and sequencing technologies allow us to gather more evidence and to move beyond the theory in different systems and populations. Here we review the extent to which recent evidence supports long-established theoretical principles of adaptation.
Network characteristics of biochemical pathways are believed to influence the rate of evolutionary change in constituent enzymes. One characteristic that may affect rate heterogeneity is control of the amount of product produced by a biochemical pathway or flux control. In particular, theoretical analyses suggest that adaptive substitutions should be concentrated in the enzyme(s) that exert the greatest control over flux. Although a handful of studies have found a correlation between position in a pathway and evolutionary rate, these investigations have not examined the relationship between evolutionary rate and flux control. Given that genes with greater control will experience stronger selection and that the probability of fixation is proportional to the selective advantage, we ask the following: 1) do upstream enzymes have majority flux control, 2) do enzymes with majority flux control accumulate adaptive substitutions, and 3) are upstream enzymes under higher selective constraint? First, by perturbing the enzymes in the aliphatic glucosinolate pathway in Arabidopsis thaliana with gene insertion lines, we show that flux control is focused in the first enzyme in the pathway. Next, by analyzing several sequence signatures of selection, we also show that this enzyme is the only one in the pathway that shows convincing evidence of selection. Our results support the hypothesis that natural selection preferentially acts on enzymes with high flux control.
Balancing selection is frequently invoked as a mechanism that maintains variation within and across populations. However, there are few examples of balancing selection operating on loci underpinning complex traits, which frequently display high levels of variation. We investigated mechanisms that may maintain variation in a focal polymorphism—leaf chemical profiles of a perennial wildflower ( Boechera stricta , Brassicaceae)—explicitly interrogating multiple ecological and genetic processes including spatial variation in selection, antagonistic pleiotropy, and frequency-dependent selection. A suite of common garden and greenhouse experiments showed that the alleles underlying variation in chemical profile have contrasting fitness effects across environments, implicating two ecological drivers of selection on chemical profile: herbivory and drought. Phenotype-environment associations and molecular genetic analyses revealed additional evidence of past selection by these drivers. Together, these data are consistent with balancing selection on chemical profile, likely caused by pleiotropic effects of secondary chemical biosynthesis genes on herbivore defense and drought response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.