Establishing the spatial extents and the nature of the outer stellar populations of dwarf galaxies is necessary for the determination of their total masses, current dynamical states, and past evolution. We here describe our investigation of the outer stellar content of the Boötes I ultra-faint dwarf galaxy, a satellite of the the Milky Way. We identify candidate member blue horizontal branch and blue straggler stars of Boötes I, both tracers of the underlying ancient stellar population, using a combination of multiband Pan-STARRS photometry and Gaia astrometry. We find a total of twenty-four candidate blue horizontal branch member stars with apparent magnitudes and proper motions consistent with membership of Boötes I, nine of which reside at projected distances beyond the nominal King profile tidal radius derived from earlier fits to photometry. We also identify four blue straggler stars of appropriate apparent magnitude to be at the distance of Boötes I, but all four are too faint to have high-quality astrometry from Gaia. The outer blue horizontal branch stars that we have identified confirm that the spatial distribution of the stellar population of Boötes I is quite extended. The morphology on the sky of these outer envelope candidate member stars is evocative of tidal interactions, a possibility that we explore further with simple dynamical models.
This paper presents improved constraints on the low-mass stellar initial mass function (IMF) of the Boötes I (Boo I) ultrafaint dwarf galaxy, based on our analysis of recent deep imaging from the Hubble Space Telescope. The identification of candidate stellar members of Boo I in the photometric catalog produced from these data was achieved using a Bayesian approach, informed by complementary archival imaging data for the Hubble Ultra Deep Field. Additionally, the existence of earlier-epoch data for the fields in Boo I allowed us to derive proper motions for a subset of the sources and thus identify and remove likely Milky Way stars. We were also able to determine the absolute proper motion of Boo I, and our result is in agreement with, but completely independent of, the measurement(s) by Gaia. The best-fitting parameter values of three different forms of the low-mass IMF were then obtained through forward modeling of the color-magnitude data for likely Boo I member stars within an approximate Bayesian computation Markov chain Monte Carlo algorithm. The best-fitting single power-law IMF slope is α = −1.95 +0.32 −0.28 , while the best-fitting broken power-law slopes are α 1 = −1.67 +0.48 −0.57 and α 2 = −2.57 +0.93 −1.04 . The best-fitting lognormal characteristic mass and width parameters are M c = 0.17 +0.05 −0.11 M and σ = 0.49 +0.13 −0.20 . These broken power-law and lognormal IMF parameters for Boo I are consistent with published results for the stars within the Milky Way and thus it is plausible that Boötes I and the Milky Way are populated by the same stellar IMF.
Many disc galaxies host galactic bars, which exert time-dependent, non-axisymmetric forces that can alter the orbits of stars. There should be both angle and radius-dependence in the resulting radial rearrangement of stars (‘radial mixing’) due to a bar; we present here novel results and trends through analysis of the joint impact of these factors. We use an N-body simulation to investigate the changes in the radial locations of star particles in a disc after a bar forms by quantifying the change in orbital radii in a series of annuli at different times post bar-formation. We find that the bar induces both azimuth angle- and radius-dependent trends in the median distance that stars have travelled to enter a given annulus. Angle-dependent trends are present at all radii we consider, and the radius-dependent trends roughly divide the disc into three ‘zones’. In the inner zone, stars generally originated at larger radii and their orbits evolved inwards. Stars in the outer zone likely originated at smaller radii and their orbits evolved outwards. In the intermediate zone, there is no net inwards or outwards evolution of orbits. We adopt a simple toy model of a radius-dependent initial metallicity gradient and discuss recent observational evidence for angle-dependent stellar metallicity variations in the Milky Way in the context of this model. We briefly comment on the possibility of using observed angle-dependent metallicity trends to learn about the initial metallicity gradient(s) and the radial rearrangement that occurred in the disc.
This paper presents improved constraints on the low-mass stellar initial mass function (IMF) of the Boötes I (Boo I) ultrafaint dwarf galaxy, based on our analysis of recent deep imaging from the Hubble Space Telescope. The identification of candidate stellar members of Boo I in the photometric catalog produced from these data was achieved using a Bayesian approach, informed by complementary archival imaging data for the Hubble Ultra Deep Field. Additionally, the existence of earlier-epoch data for the fields in Boo I allowed us to derive proper motions for a subset of the sources and thus identify and remove likely Milky Way stars. We were also able to determine the absolute proper motion of Boo I, and our result is in agreement with, but completely independent of, the measurement(s) by Gaia. The best-fitting parameter values of three different forms of the low-mass IMF were then obtained through forward modeling of the color–magnitude data for likely Boo I member stars within an approximate Bayesian computation Markov Chain Monte Carlo algorithm. The best-fitting single power-law IMF slope is α = − 1.95 − 0.28 + 0.32 , while the best-fitting broken power-law slopes are α 1 = − 1.67 − 0.57 + 0.48 and α 2 = − 2.57 − 1.04 + 0.93 . The best-fitting lognormal characteristic mass and width parameters are M c = 0.17 − 0.11 + 0.05 ⊙ and σ = 0.49 − 0.20 + 0.13 . These broken power-law and lognormal IMF parameters for Boo I are consistent with published results for the stars within the Milky Way, and thus it is plausible that Boötes I and the Milky Way are populated by the same stellar IMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.