Geopolymer is a novel binding material produced from the reaction of fly ash with an alkaline solution. In Geopolymer mortar, Portland cement is not utilized at all. In this research, the influence of various parameters on the short term engineering properties of fresh and hardened low-calcium fly ash-based Geopolymer mortar were studied. Tests were carried out on 50 x 50 x 50mm cube Geopolymer mortar specimens. The test results revealed that as the concentration of alkaline activator increases, the compressive strength of Geopolymer mortar also increases. Specimens cured at temperature of 65 o C for 1 day showed the highest 28 days compressive strength. The mass ratio of activator/fly ash of 0.4 produced the highest 28 days compressive strength for the specimen. The obtained compressive strength was in the range of 1.6MPa -20MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.