Predator-prey interactions can shape biological communities and drive evolutionary change. The assessment of predation rates in modern and ancient ecosystems presents many challenges. We examined the utility of one common predation metric, shell repair frequency, as a proxy for crushing predation on marine gastropod populations. Our six localities near Bamfield, British Columbia, represented two contrasting predation regimes: three high-wave-energy (exposed) environments have low predation rates, while three low-wave-energy (protected) environments exhibit high predation rates. We measured the occurrence of repair scars for local populations of the gastropod Chlorostoma funebrale, and recorded multiple independent variables (shell measurements, water velocity, predatory crab abundance) at each locality. Fisher's exact test established that the repair frequencies observed in the protected localities were significantly greater than those of the exposed environments. Factors important in predicting the likelihood of an individual having a repair scar were examined using binomial logistic regression. A model containing the main effects of crab abundance, shell height, shell thickness and water velocity provided the best fit in predicting the presence of repair scars, with crab abundance having the largest contribution. The strong relationship between the presence of repair scars and predator abundance indicates that repair frequency is a valid tool for assessing predation intensity in gastropod populations.
Rigorous documentation of spatial heterogeneity (b-diversity) in presentday and preindustrial ecosystems is required to assess how marine communities respond to environmental and anthropogenic drivers. However, the overwhelming majority of contemporary and palaeontological assessments have centred on single higher taxa. To evaluate the validity of single taxa as community surrogates and palaeontological proxies, we compared macrobenthic communities and sympatric death assemblages at 52 localities in Onslow Bay (NC, USA). Compositional heterogeneity did not differ significantly across datasets based on live molluscs, live non-molluscs, and all live organisms. Death assemblages were less heterogeneous spatially, likely reflecting homogenization by time-averaging. Nevertheless, live and dead datasets were greater than 80% congruent in pairwise comparisons to the literature estimates of b-diversity in other marine ecosystems, yielded concordant bathymetric gradients, and produced nearly identical ordinations consistently delineating habitats. Congruent estimates from molluscs and non-molluscs suggest that single groups can serve as reliable community proxies. High spatial fidelity of death assemblages supports the emerging paradigm of Conservation Palaeobiology. Integrated analyses of ecological and palaeontological data based on surrogate taxa can quantify anthropogenic changes in marine ecosystems and advance our understanding of spatial and temporal aspects of biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.