Primary open angle glaucoma (POAG) is characterized by progressive neurodegeneration of retinal ganglion cells (RGCs). Why RGCs degenerate in low pressure POAG remains poorly understood. To gain mechanistic insights, we developed a novel mouse model based on a mutation in human optineurin associated with hereditary, low-pressure POAG. This mouse improves the design and phenotype of currently available optineurin mice, which showed high global overexpression. While both 18-month old optineurin and nontransgenic control mice showed an age-related decrease in healthy axons and RGCs, the expression of mutant optineurin enhanced axonal degeneration and decreased RGC survival. Mouse visual function was determined using visual evoked potentials, which revealed specific visual impairment in contrast sensitivity. The E50K optineurin transgenic mouse described here exhibited clinical features of POAG, and may be useful for mechanistic dissection of POAG and therapeutic development.
(13)C-Metabolic Flux Analysis ((13)C-MFA) is rapidly being recognized as the authoritative method for determining fluxes through metabolic networks. Site-specific (13)C enrichment information obtained using NMR spectroscopy is a valuable input for (13)C-MFA experiments. Chemical shift overlaps in the 1D or 2D NMR experiments typically used for (13)C-MFA frequently hinder assignment and quantitation of site-specific (13)C enrichment. Here we propose the use of a 3D TOCSY-HSQC experiment for (13)C-MFA. We employ Non-Uniform Sampling (NUS) to reduce the acquisition time of the experiment to a few hours, making it practical for use in (13)C-MFA experiments. Our data show that the NUS experiment is linear and quantitative. Identification of metabolites in complex mixtures, such as a biomass hydrolysate, is simplified by virtue of the (13)C chemical shift obtained in the experiment. In addition, the experiment reports (13)C-labeling information that reveals the position specific labeling of subsets of isotopomers. The information provided by this technique will enable more accurate estimation of metabolic fluxes in large metabolic networks.
The diffusion-limited reaction of nitric oxide (NO) and superoxide (O 2 − ) produces peroxynitrite (ONOO − ), a biological oxidant that has been implicated in a number of pathological conditions, including neurodegenerative disorders. We previously reported that incubation of PC12 cells with peroxynitrite triggers apoptosis by simultaneously inhibiting the PI3K/Akt survival pathway, and activating the p38 and JNK MAP kinase pathways. We also reported that peroxynitrite-treated Heat Shock Protein 90 (Hsp90) stimulates PC12 cell death. Here, we show that nitrated Hsp90 mediates peroxynitrite-induced apoptosis by regulating specific signaling pathways triggered by activation of the purine receptor P2X7 (P2X7R) and downstream activation of PTEN. Intracellular delivery of peroxynitrite-treated Hsp90 was sufficient to stimulate PC12 cell death. In contrast, intracellular delivery of peroxynitrite-treated Hsp90 in which the five tyrosine (Tyr) residues susceptible to nitration were replaced by nitration-resistant phenylalanine had no effect on PC12 cell survival. Further, only nitration of Hsp90 at Tyr 56 was necessary and sufficient to stimulate PC12 cell apoptosis, and incubation of PC12 cells with peroxynitrite resulted in Hsp90 nitration at Tyr 56. Inhibition of P2X7R or downstream inhibition of PTEN prevented PC12 cell death stimulated by both incubation with peroxynitrite and nitrated Hsp90 (Hsp90 NY ). Peroxynitrite, Hsp90 NY , and P2X7R activation all increased p38 and JNK MAP kinases activity, while inhibiting the Akt survival pathway. These results suggest that, in undifferentiated PC12 cells, peroxynitrite triggers apoptosis via nitration of Hsp90 at Tyr 56, which in turn activates P2X7R and PTEN. These results contrast with observations in motor neurons where the nitration of either Tyr 33 or Tyr 56 in Hsp90 stimulates apoptosis, suggesting that the targets of peroxynitrite may be different in different cell types. However, uncovering the pathways through which peroxynitrite triggers cell death in neurodegenerative conditions will provide new potential targets for therapeutic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.