(13)C-Metabolic Flux Analysis ((13)C-MFA) is rapidly being recognized as the authoritative method for determining fluxes through metabolic networks. Site-specific (13)C enrichment information obtained using NMR spectroscopy is a valuable input for (13)C-MFA experiments. Chemical shift overlaps in the 1D or 2D NMR experiments typically used for (13)C-MFA frequently hinder assignment and quantitation of site-specific (13)C enrichment. Here we propose the use of a 3D TOCSY-HSQC experiment for (13)C-MFA. We employ Non-Uniform Sampling (NUS) to reduce the acquisition time of the experiment to a few hours, making it practical for use in (13)C-MFA experiments. Our data show that the NUS experiment is linear and quantitative. Identification of metabolites in complex mixtures, such as a biomass hydrolysate, is simplified by virtue of the (13)C chemical shift obtained in the experiment. In addition, the experiment reports (13)C-labeling information that reveals the position specific labeling of subsets of isotopomers. The information provided by this technique will enable more accurate estimation of metabolic fluxes in large metabolic networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.