Cerebral ganglia of the freshwater snail Lymnaea stagnalis were incubated in vitro in 10 microM Taxol for 8 and 24 h. Cremophor EL (0.1%) was used as a diluant. The tissue was processed for electron microscopy. Various ultrastructural parameters were assessed quantitatively. Cremophor EL appeared to seriously affect the cell somata of the multipeptidergic caudodorsal cells. In the Cremophor-controls the mean area of Golgi zones, the percentage dense material (neuropeptides) in these zones, the number of large electron dense granules (these are involved in neuropeptide processing) and the mean nuclear heterochromatin clump size, were significantly smaller than in the Ringer-controls, whereas the number of lipid droplets was higher. All these parameters, except for the lipid droplets, were not different in the Cremophor-controls and the Taxol-treated specimens. After 24 h treatment, but not after 8 h, Cremophor EL furthermore induced an increase in the number of axonal microtubules. It is argued that the results might signify activation of the neurons by Cremophor EL. Taxol induced a significant increase in the number of microtubules in axons and cell somata. Furthermore an increase in the number of Golgi zones was observed, suggesting activated neuropeptide synthesis. In all groups immunostaining with antibodies to neuropeptides produced by the caudodorsal cells was normal. Release of neuropeptide (exocytosis) from axon endings was elevated after Taxol treatment, and exceptionally high in specimens cotreated with Taxol and Org 2766 (incubation time 22 h). The effect of Org 2766 and Taxol on the number of microtubules was cumulative.(ABSTRACT TRUNCATED AT 250 WORDS)
The ultrastructural dynamics of exocytosis in the ovulation-stimulating neurosecretory Caudo-Dorsal Cells (CDC) of the freshwater snail L. stagnalis were studied after incubation of cerebral ganglia in Ringer's solutions with different concentrations of K+ and Ca2+. Detection of exocytosis was facilitated by the use of the tannic acid-glutaraldehyde fixation method (TAGO-method). In control Ringer (low K+) the frequency of exocytosis was rather low. Exocytosis mainly occurred as "terminal" exocytosis (TE); "intracellular" (ICE) and, particularly, "multiple" exocytosis (ME) took place infrequently. Incubation in high K+-containing Ringer strongly increased exocytotic activity. Compared to the controls the total frequency of exocytosis was 50 X as high, whereas TE, ICE and ME occurred 6 X, 47 X, and more than 300 X as frequently, respectively. In high K+/Ca2+-free Ringer the total frequency of exocytosis was only 2 X as high as in control Ringer. It is concluded that TE, ICE, and ME are normal, Ca2+-dependent exocytotic phenomena. The significance of their dynamics in response to K+-stimulation is discussed. The extremely high frequency of exocytosis, as well as the presence of "unaltered granule contents in transit", is explained by assuming that an exocytotic event in the CDC lasts rather long, viz. some minutes. The results may reflect the physiological mechanism by which the CDC release their ovulation hormone. The possible involvement of "clear" and "large" electron lucent vesicles in membrane reuptake after exocytosis is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.