In multivariate pattern analysis of neuroimaging data, 'second-level' inference is often performed by entering classification accuracies into a t-test vs chance level across subjects. We argue that while the random-effects analysis implemented by the t-test does provide population inference if applied to activation differences, it fails to do so in the case of classification accuracy or other 'information-like' measures, because the true value of such measures can never be below chance level. This constraint changes the meaning of the population-level null hypothesis being tested, which becomes equivalent to the global null hypothesis that there is no effect in any subject in the population. Consequently, rejecting it only allows to infer that there are some subjects in which there is an information effect, but not that it generalizes, rendering it effectively equivalent to fixed-effects analysis. This statement is supported by theoretical arguments as well as simulations. We review possible alternative approaches to population inference for information-based imaging, converging on the idea that it should not target the mean, but the prevalence of the effect in the population. One method to do so, 'permutation-based information prevalence inference using the minimum statistic', is described in detail and applied to empirical data.
Items held in working memory can be either attended or not, depending on their current behavioral relevance. It has been suggested that unattended contents might be solely retained in an activity-silent form. Instead, we demonstrate here that encoding unattended contents involves a division of labor. While visual cortex only maintains attended items, intraparietal areas and the frontal eye fields represent both attended and unattended items.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.