The study shows superior reproducibility of LTL and ITI compared with the OTO method of caliper placement in ultrasound determination of maximum abdominal aortic diameter, and the choice of caliper placement method significantly affects the prevalence of AAAs in screening programs.
IntroductionConservative treatment solutions against aortic prosthetic vascular graft infection (APVGI) for inoperable patients are limited. The combination of antibiotics with antibacterial helper compounds, such as the neuroleptic drug thioridazine (TDZ), should be explored.AimTo investigate the efficacy of conservative systemic treatment with dicloxacillin (DCX) in combination with TDZ (DCX+TDZ), compared to DCX alone, against early APVGI caused by methicillin-sensitive Staphylococcus aureus (MSSA) in a porcine model.MethodsThe synergism of DCX+TDZ against MSSA was initially assessed in vitro by viability assay. Thereafter, thirty-two pigs had polyester grafts implanted in the infrarenal aorta, followed by inoculation with 106 CFU of MSSA, and were randomly administered oral systemic treatment with either 1) DCX or 2) DCX+TDZ. Treatment was initiated one week postoperatively and continued for a further 21 days. Weight, temperature, and blood samples were collected at predefined intervals. By termination, bacterial quantities from the graft surface, graft material, and perigraft tissue were obtained.ResultsDespite in vitro synergism, the porcine experiment revealed no statistical differences for bacteriological endpoints between the two treatment groups, and none of the treatments eradicated the APVGI. Accordingly, the mixed model analyses of weight, temperature, and blood samples revealed no statistical differences.ConclusionConservative systemic treatment with DCX+TDZ did not reproduce in vitro results against APVGI caused by MSSA in this porcine model. However, unexpected severe adverse effects related to the planned dose of TDZ required a considerable reduction to the administered dose of TDZ, which may have compromised the results.
BackgroundAbdominal aortic aneurysm (AAA) is a common disease with a high mortality. Many animal models have been developed to further understand the pathogenesis of the disease, but no large animal model has been developed to investigate the autoimmune aspect of AAA formation. The aim of this study was to develop a large animal model for abdominal aortic aneurysm induction through autoimmunity by performing sheep-to-pig xenotransplantation.MethodsSix pigs underwent a xenotransplantation procedure where the infrarenal porcine aorta was replaced by a decellularized sheep aorta. In the following 47 days, the AP-diameter of the xenografts was measured using ultrasound once a week. All xenografts were harvested for histological analyses.ResultsAll the xenografts formed aneurysms with a mean increase in AP-diameter of 80.98 ± 30.20% (p < 0.005). The ultrasound measurements demonstrated a progressive aneurysmal expansion with no sign of halting towards the end of the follow-up period. Histology showed destruction of tunica media and the elastic tissue, neointimal hyperplasia, adventitial thickening with neovascularization, infiltration of lymphocytes and granulocytes, and in some cases intramural haemorrhaging.ConclusionWe developed a novel large animal AAA model by infrarenal aortic sheep-to-pig xenograph transplantation resulting in autoimmune AAA induction with continuously progressive aneurysmal growth. This model can be used to provide a better understand the autoimmune aspect of AAA formation in large animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.