Background:Work with primary cells is inherently limited by source availability and life span in culture. Flow cytometry offers extensive analytical opportunities but generally requires high cell numbers for an experiment. Methods: We have developed assays on a microfluidic system, which allow flow cytometric analysis of apoptosis and protein expression with a minimum number of fluorescently stained primary cells. In this setup, the cells are moved by pressure-driven flow inside a network of microfluidic channels and are analyzed individually by twochannel fluorescence detection. For some assays the staining reactions can be performed on-chip and the analysis is done without further washing steps.
Results:We have successfully applied the assays to evaluate (a) activation of E-selectin (CD62E) expression by
L ab-on-a-chip technology achieves a reduction of sample and reagent volume and automates complex laboratory processes. Here, we present the implementation of cell assays on a microfluidic platform using disposable microfluidic chips. The applications are based on the controlled movement of cells by pressure-driven flow inside networks of microfluidic channels. Cells are hydrodynamically focused and pass the fluorescence detector in single file. Initial applications are the determination of protein expression and apoptosis parameters. The microfluidic system allows unattended measurement of six samples per chip. Results obtained with the microfluidic chips showed good correlation with data obtained using a standard flow cytometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.