Superparamagnetic microparticles modified with an ion exchange system are reported for the recovery of phosphate from waste water by a magnetic separation technique. Layered double hydroxides (LDH), anionic clays, are precipitated from an aqueous solution and deposited by an ultrasonic treatment on superparamagnetic microparticles consisting of Fe3O4 multicores embedded in a SiO2 matrix. Deposition can be conducted in a batch process as well as in a continuous way, using an ultrasonic flow cell. The obtained composite particles show good magnetic separability and have a specific surface area of around 100 m(2) g(-1). Zr doped LDH shows improved phosphate adsorption in waste water. After magnetic separation and regeneration, the composite particles are re-used which is demonstrated for four cycles. Phosphate ions are concentrated in the regeneration solution. Simple, low cost, and a fast continuous synthesis of the composite particles paves the way for application beyond lab scale in real waste water treatment plants
The synthesis of a reusable, magnetically switchable nanocomposite microparticle, which can be modified to selectively extract and recover Hg(II) or Cu(II) from water, is reported. Superparamagnetic iron oxide (magnetite) nanoparticles act as the magnetic component in this system, and these nanoparticles were synthesized in a continuous way, allowing their large-scale production. A new process was used to create a silica matrix, confining the magnetite nanoparticles using a cheap silica source [sodium silicate (water glass)]. This results in a well-defined, filigree micrometer-sized nanocomposite via a fast, simple, inexpensive, and upscalable process. Hence, because of the ideal size of the resulting microparticles and their comparably large magnetization, particle extraction from fluids by low-cost magnets is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.