125 years after Bertha Benz completed the first overland journey in automotive history, the Mercedes Benz S-Class S 500 INTELLIGENT DRIVE followed the same route from Mannheim to Pforzheim, Germany, in fully autonomous manner. The autonomous vehicle was equipped with close-toproduction sensor hardware and relied solely on vision and radar sensors in combination with accurate digital maps to obtain a comprehensive understanding of complex traffic situations. The historic Bertha Benz Memorial Route is particularly challenging for autonomous driving. The course taken by the autonomous vehicle had a length of 103 km and covered rural roads, 23 small villages and major cities (e.g. downtown Mannheim and Heidelberg). The route posed a large variety of difficult traffic scenarios including intersections with and without traffic lights, roundabouts, and narrow passages with oncoming traffic. This paper gives an overview of the autonomous vehicle and presents details on vision and radar-based perception, digital road maps and video-based self-localization, as well as motion planning in complex urban scenarios.
In August 2013, the modified Mercedes-Benz SClass S500 INTELLIGENT DRIVE ("BERTHA") completed the historic Bertha-Benz-Memorial-Route fully autonomously. The self-driving 103 km journey passed through urban and rural areas. The system used detailed geometric maps to supplement its online perception systems. A map based approach is only feasible if a precise, map relative localization is provided. The purpose of this paper is to give a survey on this corner stone of the system architecture. Two supplementary vision based localization methods have been developed. One of them is based on the detection of lane markings and similar road elements, the other exploits descriptors for point shaped features. A final filter step combines both estimates while handling out-of-sequence measurements correctly.
This paper presents a multi-cue approach to curb recognition in urban traffic. We propose a novel texture-based curb classifier using local receptive field (LRF) features in conjunction with a multi-layer neural network. This classification module operates on both intensity images and on threedimensional height profile data derived from stereo vision.We integrate the proposed multi-cue curb classifier as an additional measurement module into a state-of-the-art Kalman filter-based urban lane recognition system.Our experiments involve a challenging real-world dataset captured in urban traffic with manually labeled ground-truth. We quantify the benefit of the proposed multi-cue curb classifier in terms of the improvement in curb localization accuracy of the integrated system. Our results indicate a 25% reduction of the average curb localization error at real-time processing speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.