In this paper a model for a simulation based prediction of temperature induced shape deviations in dry milling is presented. A closed loop between Boolean material removal, process forces, heat flux and thermoelastic deformation is established. Therefore, an efficient dexel based machining simulation is extended by a contact zone analysis to model the local workpiece load. Based on the computed contact zone the cutting forces and heat flux are calculated using a semi-empirical process model. For a detailed consideration of the loads they are discretized and localized on the dexel-represented workpiece surface. A projection of the localized workpiece loads on the boundary of the finite element domain, taking into account the Boolean material removal during the process, allows the calculation of the current temperature and deformation of the workpiece. By transforming these thermomechanical characteristics back to the dexel-model a consideration in the machining simulation is possible. An extended contact zone analysis is developed for the prediction of the localized shape deviations. Finally, the results of the simulation are compared with measured data. The comparison shows that workpiece temperatures, workpiece deformation and shape deviations in different workpiece areas are predicted accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.