Seismic reflection profiles, bathymetric and magnetic data collected along and across the continental margin of the Bellingshausen Sea provide new constraints and interpretations of the oceanic basement structure and Cenozoic glacial history of West Antarctica. Evidence for tectonic boundaries that lie perpendicular to the margin has been identified on the basis of one previously unpublished along-slope multichannel seismic reflection profile. By combining several magnetic data sets, we determined basement ages and verified the positions of possible fracture zones, enabling us to improve previous tectonic and stratigraphic models. We establish three main sediment units on the basis of one seismic along-slope profile and by correlation to the continental shelf via one cross-slope profile. We interpret a lowermost unit, Be3 (older then 9.6 Ma), as representing a long period of slow accumulation of mainly turbiditic sediments. Unit Be2 (from about 9.6 to 5.3 Ma) may represent a period of shortlived ice advances on the continental shelf. The uppermost unit, Be1 (from about 5.3 Ma to present), apparently consists of rapidly deposited terrigenous sediment that we interpret as having been transported to the shelf edge by frequent advances of grounded ice. Listric faults are observed in Be1 and indicate sediment instability due to interactions between different depositional processes. Correlation of the sediment classification scheme with the continental rise of the western Antarctic Peninsula shows obvious differences in sediment depositional patterns. We estimate a very high sedimentation rate for Unit Be1 (up to 295 m/my) which points to an increase in glacial sediment supply due to major glacial outlets that flowed to nearby parts of the shelf edge in Pliocene and Quaternary times. This is in contrast to the situation at the adjacent Antarctic Peninsular margin and many other parts of the continental rise around Antarctica.
[1] We model sediment isopach grids for the southern Pacific margin of West Antarctica on the basis of a compilation of more than 10,000 km of single-channel and multichannel seismic reflection data and correlations with ocean drilling sites. Following recent seismic stratigraphic models, we differentiate two main sequences, the upper of which alone is defined by seismostratigraphic indications for frequent grounded ice advances to the shelf edge off West Antarctica. The subsequent modeling of sediment thickness grids allows us to compare the pre-glacially dominated and glacially dominated sedimentary development of the study area. On the basis of available age constraints from drilling sites, we assume the onset of accumulation of sediments on the continental rise that were supplied by frequent advances of grounding ice on the continental shelf to have occurred at about 10 Ma. The thickest glacial sediment accumulations occur in front of major glacial drainage outlets, i.e., Marguerite Trough on the western Antarctic Peninsula margin, Belgica Trough in the Bellingshausen Sea, and a depression on the inner and middle shelves off Pine Island Bay in the Amundsen Sea. Glacially dominated sedimentation rates of between 140 and 170 m/m.y. are calculated for these sites.
We compared a mobile FPCT and a 320-row MDCT by using the same radiation dose for scans. We found the spatial resolution to be higher in the FPCT. Hounsfield units were more accurate and homogeneity and contrast resolution were better in MDCT. The MDCT was also less prone to artifacts from thick Kirschner wires but showed comparably more artifacts around thin wires.
A set of single-and multi-channel seismic reflection profiles provide insights into the younger Cenozoic sedimentation history of the continental rise in the western Bellingshausen Sea, west and north of Peter I Island. This area has been strongly influenced by glacially controlled sediment supply from the continental shelf, interacting with a westward-flowing bottom current. From south to north, the seismic data show changes in the symmetry and structure of a prominent sediment depocentre. Its southernmost sector provides evidence of sediment drift whereas northwards the data show a large channellevee complex, with a western levee oriented in the opposite direction to that of the drift in the south. This pattern indicates the northward-decreasing influence of a westward-flowing bottom contour current in the study area. Topographic data suggest the morphologic ridges at Peter I Island to be the main features responsible for variable bottom-current influence, these acting as barrier to the bottom current and entrained sedimentary material. West of Peter I Island, the east-orientated Coriolis force remains effective in deflecting the suspended load of the turbidity currents towards the west, thereby promoting growth of the western channel levee. Calculated sediment accumulation rates based on seismic data reveal Depocentre C to consist of younger Cenozoic material supplied by glacial transport and modified by contour currents in the western Bellingshausen Sea. These findings demonstrate that the shape, structure and distribution of sediment mounds and estimates of sediment accumulation rates can be associated to the influence of bottom currents and their long-term evolution in response to tectonic movements, ice-sheet dynamics and deep-water formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.