Phased microphone arrays have become a well-established tool for performing aeroacoustic measurements in wind tunnels (both open-jet and closed-section), flying aircraft, and engine test beds. This paper provides a review of the most wellknown and state-of-the-art acoustic imaging methods and recommendations on when to use them. Several exemplary results showing the performance of most methods in aeroacoustic applications are included. This manuscript provides a general introduction to aeroacoustic measurements for non-experienced microphone-array users as well as a broad overview for general aeroacoustic experts.
The contents of this report may be cited on condition that full credit is given to NLR and the authors. This publication has been refereed by the Advisory Committee AEROSPACE VEHICLES.
This paper is concerned with the mathematical analysis of experimental methods for the estimation of the power of an uncorrelated, extended aeroacoustic source from measurements of correlations of pressure fluctuations. We formulate a continuous, infinite dimensional model describing these experimental techniques based on the convected Helmholtz equation in R 3 or R 2 . As a main result we prove that an unknown, compactly supported source power function is uniquely determined by idealized, noise-free correlation measurements. Our framework further allows for a precise characterization of state-of-the-art source reconstruction methods and their interrelations.
In this work, various microphone phased array data processing techniques are applied to two existing datasets from aeroacoustic wind tunnel tests. The first of these is from a large closed-wall facility, DLR's Kryo-Kanal Köln (DNW-KKK), and is a measurement of the high-lift noise of a semispan model. The second is from a small-scale open-jet facility, the NASA Langley Quiet Flow Facility (QFF), and is a measurement of a clean airfoil selfnoise. The data had been made publicly available in 2015, and were analyzed by several research groups using multiple analysis techniques. This procedure allows the assessment of the variability of individual methods across various organizational implementations, as well as the variability of results produced by different array analysis methods. This paper summarizes the results presented at panel sessions held at AIAA conferences in 2015 and 2016. Results show that with appropriate handling of background noise, all advanced methods can identify dominant acoustic sources for a broad range of frequencies. Lowerlevel sources may be masked or underpredicted. Integrated levels are more robust and in closer agreement between methods than narrowband maps for individual frequencies. Overall there is no obvious best method, though multiple methods may be used to bound expected behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.