Degeneration of septohippocampal cholinergic neurons results in memory deficits attributable to loss of cholinergic modulation of hippocampal synaptic circuits. A remarkable consequence of cholinergic degeneration is the sprouting of noradrenergic sympathetic fibers from the superior cervical ganglia into hippocampus. The functional impact of sympathetic ingrowth on synaptic physiology has never been investigated. Here, we report that, at CA3-CA1 synapses, a Hebbian form of long-term depression (LTD) induced by muscarinic M 1 receptor activation (mLTD) is lost after medial septal lesion. Unexpectedly, expression of mLTD is rescued by sympathetic sprouting. These effects are specific because LTP and other forms of LTD are unaffected. The rescue of mLTD expression is coupled temporally with the reappearance of cholinergic fibers in hippocampus, as assessed by the immunostaining of fibers for VAChT (vesicular acetylcholine transporter). Both the cholinergic reinnervation and mLTD rescue are prevented by bilateral superior cervical ganglionectomy, which also prevents the noradrenergic sympathetic sprouting. The new cholinergic fibers likely originate from the superior cervical ganglia because unilateral ganglionectomy, performed when cholinergic reinnervation is well established, removes the reinnervation on the ipsilateral side. Thus, the temporal coupling of the cholinergic reinnervation with mLTD rescue, together with the absence of reinnervation and mLTD expression after ganglionectomy, demonstrate that the autonomic-driven cholinergic reinnervation is essential for maintaining mLTD after central cholinergic cell death. We have discovered a novel phenomenon whereby the autonomic and central nervous systems experience structural rearrangement to replace lost cholinergic innervation in hippocampus, with the consequence of preserving a form of LTD that would otherwise be lost as a result of cholinergic degeneration.
Neurons located in the locus coeruleus project to hippocampus and provide noradrenergic innervation necessary for hippocampal-dependent learning and memory. The mechanisms underlying the function of norepinephrine (NE) in memory processing are unknown but likely reside in the ability of NE to modulate the efficacy of glutamate synaptic transmission via activation of G-protein-coupled adrenergic receptors. Here we show that application of NE to rat hippocampal slices in vitro induces a long-term depression (LTD) of synaptic transmission at excitatory CA3-CA1 synapses that persists for >/=40 min after agonist washout. This LTD, which we refer to as NE LTD, is mediated by activation of alpha1 adrenergic receptors because the alpha1 agonist methoxamine can induce LTD at the same magnitude as that induced with the nonselective adrenergic agonist NE. Furthermore, NE LTD induced by either NE or methoxamine is blocked with the alpha1 receptor antagonist, prazosin, but is unaffected by antagonists of alpha2 and beta receptors. This plasticity persists in the presence of the GABA(A) receptor antagonist bicuculline, indicating that adrenergic modulation of GABA(A) receptor-mediated transmission does not underlie NE LTD. Induction of NE LTD requires presynaptic activity during agonist application and postsynaptic activation of N-methyl-d-aspartate receptors, fulfilling Hebbian criteria of coincident pre- and postsynaptic activity. The expression of NE LTD is likely to be postsynaptic because paired-pulse facilitation ratios during NE LTD expression are not different from baseline, similar to LTD induced by low-frequency stimulation. Thus we report the identification and characterization of a novel Hebbian form of LTD in hippocampus that is induced after activation of alpha1 adrenergic receptors. This plasticity may be a mechanism by which the adrenergic system participates in normal cognitive function.
Intact cholinergic innervation from the medial septum and noradrenergic innervation from the locus ceruleus are required for hippocampal-dependent learning and memory. However, much remains unclear about the precise roles of acetylcholine (ACh) and norepinephrine (NE) in hippocampal function, particularly in terms of how interactions between these two transmitter systems might play an important role in synaptic plasticity. Previously, we reported that activation of either muscarinic M 1 or adrenergic ␣1 receptors induces activity-and NMDA receptor-dependent long-term depression (LTD) at CA3-CA1 synapses in acute hippocampal slices, referred to as muscarinic LTD (mLTD) and norepinephrine LTD (NE LTD), respectively. In this study, we tested the hypothesis that mLTD and NE LTD are independent forms of LTD, yet require activation of a common G␣q-coupled signaling pathway for their induction, and investigated the net effect of coactivation of M 1 and ␣1 receptors on the magnitude of LTD induced. We find that neither mLTD nor NE LTD requires phospholipase C activation, but both plasticities are prevented by inhibiting the Src kinase family and extracellular signalregulated protein kinase (ERK) activation. Interestingly, LTD can be induced when M 1 and ␣1 agonists are coapplied at concentrations too low to induce LTD when applied separately, via a summed increase in ERK activation. Thus, because ACh and NE levels in vivo covary, especially during periods of memory encoding and consolidation, cooperative signaling through M 1 and ␣1 receptors could function to induce long-term changes in synaptic function important for cognition.
Our laboratory recently characterized a form of long-term depression (LTD) at CA3-CA1 synapses mediated by M1 muscarinic receptors (mAChRs), termed muscarinic LTD (mLTD). mLTD is both activity and NMDAR dependent, characteristics shared by forms of synaptic plasticity thought to be relevant to learning and memory, including long-term potentiation (LTP) induced by high-frequency stimulation (HFS-LTP) and long-term depression induced by low-frequency stimulation (LFS-LTD). However, it remains unclear whether mLTD can occur sequentially with these electrically induced forms of hippocampal plasticity or whether mLTD might interact with them. The first goal of this study was to examine the interplay of mLTD and HFS-LTP. We report that mLTD expression does not alter subsequent induction of HFS-LTP and, further, at synapses expressing HFS-LTP, mLTD can mediate a novel form of depotentiation. The second goal was to determine whether mLTD would alter LFS-LTD induction and/or expression. Although we show that mLTD is occluded by saturation of LFS-LTD, suggesting mechanistic similarity between these two plasticities, saturation of mLTD does not occlude LFS-LTD. Surprisingly, however, the LFS-LTD that follows cholinergic receptor activation is NMDAR independent, indicating that application of muscarinic agonist induces a change in the induction mechanism required for LFS-LTD. These data demonstrate that mLTD can coexist with electrically induced forms of synaptic plasticity and support the hypothesis that mLTD is one of the mechanisms by which the cholinergic system modulates hippocampal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.