CAR T therapy targeting solid tumors is restrained by limited infiltration and persistence of those cells in the tumor microenvironment (TME). Here, we developed approaches to enhance the activity of CAR T cells using an orthotopic model of locally advanced breast cancer. CAR T cells generated from Th/Tc17 cells given with the STING agonists DMXAA or cGAMP greatly enhanced tumor control, which was associated with enhanced CAR T cell persistence in the TME. Using single-cell RNA sequencing, we demonstrate that DMXAA promoted CAR T cell trafficking and persistence, supported by the generation of a chemokine milieu that promoted CAR T cell recruitment and modulation of the immunosuppressive TME through alterations in the balance of immune-stimulatory and suppressive myeloid cells. However, sustained tumor regression was accomplished only with the addition of anti–PD-1 and anti–GR-1 mAb to Th/Tc17 CAR T cell therapy given with STING agonists. This study provides new approaches to enhance adoptive T cell therapy in solid tumors.
Background Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). Methods We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. Results From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. Conclusions Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.
There is an urgent need for a vaccine with efficacy against SARS-CoV-2. We hypothesize that peptide vaccines containing epitope regions optimized for concurrent B cell, CD4 + T cell, and CD8 + T cell stimulation would drive both humoral and cellular immunity with high specificity, potentially avoiding undesired effects such as antibody-dependent enhancement (ADE). Additionally, such vaccines can be rapidly manufactured in a distributed manner. In this study, we combine computational prediction of T cell epitopes, recently published B cell epitope mapping studies, and epitope accessibility to select candidate peptide vaccines for SARS-CoV-2. We begin with an exploration of the space of possible T cell epitopes in SARS-CoV-2 with interrogation of predicted HLA-I and HLA-II ligands, overlap between predicted ligands, protein source, as well as concurrent human/murine coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, viral source protein abundance, sequence conservation, coverage of high frequency HLA alleles and co-localization of CD4 + and CD8 + T cell epitopes. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering to select regions with surface accessibility, high sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. From 58 initial candidates, three B cell epitope regions were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we propose a set of SARS-CoV-2 vaccine peptides for use in subsequent murine studies and clinical trials. Figure 2: Landscape of SARS-CoV-2 MHC ligands. (A&B) Selection criteria for (A) HLA-I and (B) shows predicted (x-axis) versus IEDB (y-axis) binding affinity, with horizontal line representing 500nM IEDB binding affinity and vertical line representing corresponding predicted binding affinity for 90% specificity in binding prediction. Histogram (top) shows all predicted SARS-CoV-2 HLA ligand candidates. (C) Landscape of predicted HLA ligands, showing nested HLA ligands comprising HLA-I and -II ligands with complete overlap (top), and LOESS fitted curve (span = 0.1) for HLA-I/II ligands by location along the . Red track represents SARS epitopes identified in literature review with sequence identity in SARS-CoV-2. Predicted HLA ligands with conserved sequences to this literature set are represented in the lollipop plot with a red stick. (D) Summary of total number of predicted HLA-I/II ligands and nested HLA ligands. (E) Summary of nested HLA ligand coverage by protein, with raw counts (left) or counts normalized by protein length (right). (F) Summary of murine/human MHC ligand overlap. (G) Distribution of population frequencies among predicted HLA-I, -II, and nested HLA ligands.
BackgroundThere is an urgent need for a vaccine with efficacy against SARS-CoV-2. We hypothesize that peptide vaccines containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation would drive both humoral and cellular immunity with high specificity, potentially avoiding undesired effects such as antibody-dependent enhancement (ADE) (figure 1). Leveraging methods initially developed for prediction of tumor-specific antigen targets, we combine computational prediction of T cell epitopes, recently published B cell epitope mapping studies, and epitope accessibility to select candidate peptide vaccines for SARS-CoV-2 (figure 2).MethodsSARS-CoV-2 HLA-I and HLA-II ligands were predicted using multiple MHC binding prediction software. T cell vaccine candidates were further refined by predicted immunogenicity, viral source protein abundance, sequence conservation, coverage of high frequency HLA alleles, and co-localization of CD4+/CD8+ T cell epitopes. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, filtering to select regions with surface accessibility, high sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. Using murine compatible T/B cell epitopes, vaccine studies were performed with downstream ELISA/ELISpot to monitor immunogenicity.ResultsWe observed distribution of HLA-I (n = 2486) and -II (n = 3138) ligands evenly across the SARS-CoV-2 proteome, with significant overlap between predicted human and murine ligands (figure 3). Applying a multivariable immunogenicity model trained from IEDB viral tetramer data (AUC 0.7 and 0.9 for HLA-I and -II, respectively), alongside filters for entropy and protein expression resulted in 292 CD8+ and 616 CD4+ epitopes (figure 4). From an initial pool of 58 B cell epitope candidates, three epitope regions were identified (figure 5). Combining B cell and T cell analyses, alongside manufacturability heuristic, we propose a set of SARS-CoV-2 vaccine peptides for use in subsequent murine studies and clinical trials (figure 6). Preliminary murine studies demonstrate evidence of T and B cell activation (figure 7).Abstract 478 Figure 1Summary of combination CD4+/CD8+ T cell and B cell SARS-CoV-2 peptide vaccine. Humoral immunity (blue dashed box) is targeted through B cell and HLA-II epitopes, aimed at viral neutralization while avoiding non-neutralizing and ADE promoting targets. Cellular immunity (red dashed box) is targeted through HLA-I and HLA-II epitopes, aimed to clear virally infected cellsAbstract 478 Figure 2Summary of B cell and CD4+/CD8+ epitope prediction workflows. Pathways are colored by B cell (blue), human T cell (black), and murine T cell (red) epitope prediction workflows. Color bars represent proportions of epitopes derived from internal proteins (ORF), nucleocapsid phosphoprotein, and surface-exposed proteins (spike, membrane, envelope)Abstract 478 Figure 3Landscape of SARS-CoV-2 MHC ligands. (A&B) Selection criteria for (A) HLA-I and (B) HLA-II SARS-CoV-2 HLA ligand candidates. Scatterplot (bottom) shows predicted (x-axis) versus IEDB (y-axis) binding affinity, with horizontal line representing 500 nM IEDB binding affinity and vertical line representing corresponding predicted binding affinity for 90% specificity in binding prediction. Histogram (top) shows all predicted SARS-CoV-2 HLA ligand candidates. (C) Landscape of predicted HLA ligands, showing nested HLA ligands comprising HLA-I and -II ligands with complete overlap (top), and LOESS fitted curve (span = 0.1) for HLA-I/II ligands by location along the SARS-CoV2 proteome (bottom). Red track represents SARS epitopes identified in literature review with sequence identity in SARS-CoV-2. Predicted HLA ligands with conserved sequences to this literature set are represented in the lollipop plot with a red stick. (D) Summary of total number of predicted HLA-I/II ligands and nested HLA ligands. (E) Summary of nested HLA ligand coverage by protein, with raw counts (left) or counts normalized by protein length (right). (F) Summary of murine/human MHC ligand overlap. (G) Distribution of population frequencies among predicted HLA-I, -II, and nested HLA ligandsAbstract 478 Figure 4Prediction of SARS-CoV-2 T cell epitopes. (Top) Summary of predicted (left) and IEDB-defined (right) SARS-CoV-2 HLA ligands, showing proportions of each derivative protein. (Middle) Funnel plot representing counts of HLA-I (red text), HLA-II (blue text), and nested HLA (violet text) ligands along with proportions of HLA-I (top bar) and HLA-II (bottom bar) alleles at each filtering step. (Bottom) Summary of CD8+ (red, top), CD4+ (blue, bottom), and nested T cell epitopes (middle) after filtering criteria in S, M, and N proteins. Y-axis and size represent the population frequency of each CD8+ and CD4+ epitopes by circles. Middle track of diamonds represents overlaps between CD8+ and CD4+ epitopes, showing the overlap with greatest population frequency (size) for each region of overlap. Color of diamonds represents the proportion of overlap between CD4+ and CD8+ epitope sequences.Abstract 478 Figure 5Selection of SARS-CoV-2 B cell epitope regions. (A) SARS-CoV-2 linear B cell epitopes curated from epitope mapping studies. X-axis represents amino acid position along the SARS-CoV-2 spike protein, with labeled start sites. (B) Schematic for filtering criteria of B cell epitope candidates. (C) Spike protein amino acid sequence, with overlay of selection features prior to filtering. Polymorphic residues are red, glycosites are blue, accessible regions highlighted in yellow. The receptor binding domain (RBD), fusion peptide (FP), and HR1/HR2 regions are outlined. (D) Spike protein functional regions (RBD, FP, HR1/2) amino acid sequences, with residues colored by how many times they occur in identified epitopes. Selected accessible sub-sequences of known antibody epitopes highlighted in purple outline. (E) S protein trimer crystal structure with glycosylation, with final linear epitope regions highlighted by colorAbstract 478 Figure 6T cell and B cell vaccine candidates. (A) 27mer vaccine peptide sets selecting for best CD4+, CD8+, CD4+/CD8+, and B cell epitopes with HLA-I, HLA-II, and total population coverage. (B) Unified list of all selected 27mer vaccine peptides. Vaccine peptides containing predicted ligands for murine MHC alleles (H2-b and H2-d haplotypes) are indicated in their respective columnsAbstract 478 Figure 7Immunogenicity of murine-compatible peptide vaccines. (A) ELISA result: peptides derived from three B cell vaccine candidate regions were coated on peptide capture plates, either in combination by overlapping core epitopes (1+2 and 3+4) or alone (5). (B) ELISpot results: splenocytes from animals vaccinated against predicted B cell epitopes (1–5) or measles peptide control (M; adapted from Obeid et al. 1995). Each point represents the average of technical triplicates, background subtracted against no-peptide control. (A&B) Colors represent adjuvant used for vaccination. P-values shown above each graph represent pair-wise Mann-Whitney u-testConclusionsA peptide vaccine targeting B cells, CD4+ T cells, and CD8+ T cells in parallel may prove an important part of a multifaceted response to the COVID-19 pandemic. Adapting methods for predicting tumor-specific antigens, we presented a set of peptide candidates with high overlap for T and B cell epitopes and broad haplotype population coverage, with validation of immunogenicity in murine vaccine studies.AcknowledgementsThe authors appreciate funding support from University of North Carolina University Cancer Research Fund (AR and BGV), the Susan G. Komen Foundation (BGV), the V Foundation for Cancer Research (BGV), and the National Institutes of Health (CCS, 1F30CA225136). We would like to thank members of the #DownWithTheCrown Slack channel for helpful discussion and feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.