Brd2 is a member of the bromodomain-extraterminal domain (BET) family of proteins and functions as an acetyl-histone-directed transcriptional co-regulator and recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. While Brd2 acts as a protooncogene in mammalian blood, developmental studies link it to regulation of neuronal apoptosis and epilepsy, and complete knockout of the gene is invariably embryonic lethal. In Drosophila, the Brd2 homolog acts as a maternal effect factor necessary for segment formation and identity and proper expression of homeotic loci, including Ultrabithorax and engrailed. To test the various roles attributed to Brd2 in a single developmental system representing a non-mammalian vertebrate, we conducted a phenotypic characterization of Brd2a deficient zebrafish embryos produced by morpholino knockdown and corroborated by Crispr-Cas9 disruption and small molecule inhibitor treatments. brd2aMO morphants exhibit reduced hindbrain with an ill-defined midbrain-hindbrain boundary (MHB) region; irregular notochord, neural tube, and somites; and abnormalities in ventral trunk and ventral nerve cord interneuron positioning. Using whole mount TUNEL and confocal microscopy, we uncover a significant decrease, then a dramatic increase, of p53-independent cell death at the start and end of segmentation, respectively. In contrast, using qualitative and quantitative analyses of BrdU incorporation, phosphohistone H3-tagging, and flow cytometry, we detect little effect of Brd2a knockdown on overall proliferation levels in embryos. RNA in situ hybridization shows reduced or absent expression of homeobox gene eng2a and paired box gene pax2a, in the hindbrain domain of the MHB region, and an overabundance of pax2a-positive kidney progenitors, in knockdowns. Together, these results suggest an evolutionarily conserved role for Brd2 in the proper formation and/or patterning of segmented tissues, including the vertebrate CNS, where it acts as a bi-modal regulator of apoptosis, and is necessary, directly or indirectly, for proper expression of genes that pattern the MHB and/or regulate differentiation in the anterior hindbrain.
Background Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). Methods We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. Results From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. Conclusions Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.
There is an urgent need for a vaccine with efficacy against SARS-CoV-2. We hypothesize that peptide vaccines containing epitope regions optimized for concurrent B cell, CD4 + T cell, and CD8 + T cell stimulation would drive both humoral and cellular immunity with high specificity, potentially avoiding undesired effects such as antibody-dependent enhancement (ADE). Additionally, such vaccines can be rapidly manufactured in a distributed manner. In this study, we combine computational prediction of T cell epitopes, recently published B cell epitope mapping studies, and epitope accessibility to select candidate peptide vaccines for SARS-CoV-2. We begin with an exploration of the space of possible T cell epitopes in SARS-CoV-2 with interrogation of predicted HLA-I and HLA-II ligands, overlap between predicted ligands, protein source, as well as concurrent human/murine coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, viral source protein abundance, sequence conservation, coverage of high frequency HLA alleles and co-localization of CD4 + and CD8 + T cell epitopes. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering to select regions with surface accessibility, high sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. From 58 initial candidates, three B cell epitope regions were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we propose a set of SARS-CoV-2 vaccine peptides for use in subsequent murine studies and clinical trials. Figure 2: Landscape of SARS-CoV-2 MHC ligands. (A&B) Selection criteria for (A) HLA-I and (B) shows predicted (x-axis) versus IEDB (y-axis) binding affinity, with horizontal line representing 500nM IEDB binding affinity and vertical line representing corresponding predicted binding affinity for 90% specificity in binding prediction. Histogram (top) shows all predicted SARS-CoV-2 HLA ligand candidates. (C) Landscape of predicted HLA ligands, showing nested HLA ligands comprising HLA-I and -II ligands with complete overlap (top), and LOESS fitted curve (span = 0.1) for HLA-I/II ligands by location along the . Red track represents SARS epitopes identified in literature review with sequence identity in SARS-CoV-2. Predicted HLA ligands with conserved sequences to this literature set are represented in the lollipop plot with a red stick. (D) Summary of total number of predicted HLA-I/II ligands and nested HLA ligands. (E) Summary of nested HLA ligand coverage by protein, with raw counts (left) or counts normalized by protein length (right). (F) Summary of murine/human MHC ligand overlap. (G) Distribution of population frequencies among predicted HLA-I, -II, and nested HLA ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.