Microarchitectural resources such as caches and predictors can be used to leak information across security domains. Significant prior work has demonstrated attacks and defenses for specific types of such microarchitectural side and covert channels. In this paper, we introduce a general mathematical study of microarchitectural channels using information theory. Our conceptual contribution is a simple mathematical abstraction that captures the common characteristics of all microarchitectural channels. We call this the Bucket model and it reveals that microarchitectural channels are fundamentally different from side and covert channels in networking.We then quantify the communication capacity of several microarchitectural covert channels (including channels that rely on performance counters, AES hardware and memory buses) and measure bandwidths across both KVM based heavy-weight virtualization and light-weight operating-system level isolation. We demonstrate channel capacities that are orders of magnitude higher compared to what was previously considered possible.Finally, we introduce a novel way of detecting intelligent adversaries that try to hide while running covert channel eavesdropping attacks. Our method generalizes a prior detection scheme (that modeled static adversaries) by introducing noise that hides the detection process from an intelligent eavesdropper. 639978-1-4799-8930-0/15/$31.00 ©2015 IEEE
Data containers enable users to control access to their data while untrusted applications compute on it. However, they require replicating an application inside each containercompromising functionality, programmability, and performance. We propose DATS-a system to run web applications that retains application usability and efficiency through a mix of hardware capability enhanced containers and the introduction of two new primitives modeled after the popular model-view-controller (MVC) pattern. (1) DATS introduces a templating language to create views that compose data across data containers. (2) DATS uses authenticated storage and confinement to enable an untrusted storage service, such as memcached and deduplication, to operate on plain-text data across containers. These two primitives act as robust declassifiers that allow DATS to enforce non-interference across containers, taking large applications out of the trusted computing base (TCB). We showcase eight different web applications including Gitlab and a Slack-like chat, significantly improve the worstcase overheads due to application replication, and demonstrate usable performance for common-case usage.
Data containers enable users to control access to their data while untrusted applications compute on it. However, they require replicating an application inside each containercompromising functionality, programmability, and performance. We propose DATS-a system to run web applications that retains application usability and efficiency through a mix of hardware capability enhanced containers and the introduction of two new primitives modeled after the popular model-view-controller (MVC) pattern. (1) DATS introduces a templating language to create views that compose data across data containers. (2) DATS uses authenticated storage and confinement to enable an untrusted storage service, such as memcached and deduplication, to operate on plain-text data across containers. These two primitives act as robust declassifiers that allow DATS to enforce non-interference across containers, taking large applications out of the trusted computing base (TCB). We showcase eight different web applications including Gitlab and a Slack-like chat, significantly improve the worstcase overheads due to application replication, and demonstrate usable performance for common-case usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.