Eight model high entropy alloys (HEAs) in the CoCrFeMnNi family (including one alloy each in the CoCrFeNi and CoFeMnNi subfamilies) were made, prepared, and exposed to laboratory air for 1100 h at 650°C and 750°C. Two commercial alloys, nickel-base superalloy 230 (N06230) and austenitic stainless steel 304H (S30409), were simultaneously exposed for comparison. Mass change oxidation kinetics were measured and cross-sections of exposed samples were observed. Seven of these HEAs contained much more Mn (12-24 wt.%) than is found in commercial heat-resistant stainless steels and superalloys. The oxidation resistance of CoCrFeNi was excellent and comparable to 304H at 650°C and only slightly worse at 750°C. The thin oxide scale on CoCrFeNi was primarily Cr oxide (presumably Cr 2 O 3 ) with some Mn oxide at the outer part of the scale. The CoCrFeMnNi HEAs all experienced more rapid oxidation than CoCrFeNi and, especially at 750°C, experienced oxide scale spallation. The addition of Y in the alloy to lower S improved the oxidation resistance of these HEAs. Alloy CoFeMnNi, without Cr, experienced much higher oxidation rates and scale spallation than the Cr-containing alloys. A linear regression analysis of the log of the parabolic rate constant, log(k p ), as functions of wt.% Cr and Mn found a good correlation for the compositional dependence of the oxidation rate constant, especially at 650°C. Mn was found to be more detrimental increasing log(k p ) than Cr was helpful reducing log(k p ). If CoCrFeMnNi HEAs are to be used in high temperature oxidizing environments, then examining lower levels of Mn, while maintaining Cr levels, should be pursued.
Research on carbon capture and storage has been focused on CO 2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO 2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO 2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO 2 mineralization.
Atomic layer deposition (ALD) was used to apply conformal, nanothick ZnO coatings on particle substrates using a fluidized bed reactor. Diethylzinc (DEZ) and water were used as precursors at 177 °C. Observed growth rates were ca. 2.0 Å/cycle on primary particles as verified by HRTEM. ICP‐AES and XPS were used to quantify Zn:substrate ratios. Layers of 6, 18, and 30 nm were deposited on 550 nm SiO2 spheres for UV blocking cosmetics particles. TiO2 nanoparticles were coated in the second part of this work by ZnO shells of 2, 5, and 10 nm thickness as novel inorganic sunscreen particles. The specific surface area of powders changed appropriately after nanothick film deposition using optimized conditions, signifying that high SA particles can be functionalized without agglomeration. The ZnO layers were polycrystalline as deposited and narrowing of the FWHM occurred upon annealing. Annealing the ZnO‐TiO2 nanocomposite powder to 600 °C caused the formation of zinc titanate (Zn2TiO4) in both oxygen‐rich and oxygen‐deficient environments. The non‐ideal surface behavior of the DEZ precursor became problematic for the much longer times required for high surface area nanoparticle processing and results in Zn‐rich films at this growth temperature. In situ mass spectrometry provides process control capability to functionalize bulk quantities of nano‐ and ultrafine particles without significant precursor waste or process overruns. ZnO overlayers can be efficiently deposited on the surfaces of primary particles using ALD processing in a scalable fluidized bed reactor.
This report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, X-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties for liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.