is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and University of Brasilia. Changes resulting from the publishing process-such as editing, corrections, structural formatting, and other quality control mechanisms-may not be reflected in this version of the text. The definitive version of the text was subsequently published in [
Accumulation of lipid droplets (LD) in luteal cells likely is important for energy storage and steroidogenesis in the highly metabolically active corpus luteum (CL). The objective of this study was to determine the effect of plane of nutrition on progesterone (P4) secretion, and lipid droplet number and size in cultured ovine luteal cells. Ewes were randomly assigned to one of three nutritional groups: control (C; 100% NRC requirements, n=9), overfed (O; 2×C, n=12), or underfed (U; 0.6×C, n=10). Superovulation was induced by follicle stimulating hormone injections. At the early and mid-luteal phases of the estrous cycle, CL were dissected from ovaries, and luteal cells isolated enzymatically. Luteal cells were incubated overnight in medium containing serum in chamber slides. Media were then changed to serum-free and after 24h incubation, media were collected for P4 analysis, and cells were fixed in formalin and stained with BODIPY followed by DAPI staining. Z-stacks of optical sections of large and small luteal cells (LLC and SLC, respectively) were obtained using a laser-scanning microscope. Rendered 3D images of individual LLC and SLC were analyzed for cell volume, and total and individual LD volume, number and percentage of cellular volume occupied by LD by using Imaris software. Concentrations of P4 in serum and media were greater (P<0.05) at the mid than early-luteal phase, and were not affected by nutritional plane. LD total volume and number were greater (P<0.001) in LLC than SLC; however, mean volume of individual LD was greater (P<0.02) in SLC than LLC. In LLC, total LD volume was greater (P<0.02) in O than C and U ewes. In SLC, total LD volume and number was greater (P<0.003) at the mid than early-luteal phase, and percentage of cell volume occupied by LD was greater (P<0.002) in U than C and O ewes. These data demonstrate that both stage of luteal development and nutritional plane affect selected LD measurements and thus may affect luteal functions. Furthermore, these data confirm that LD dynamics differ among parenchymal steroidogenic luteal cell types.
The aim was to evaluate the effects of nutritional plane on in vitro progesterone (P4) secretion by granulosa (G) cells cultured in the presence or absence of effectors of the nitric oxide (NO) system. Ewes were randomly assigned into three nutritional groups: control (C), overfed (O; 2 × C), or underfed (U; 0.6 × C). Follicular development was induced by FSH injections. On day 15 of the estrous cycle, G cells were isolated and cultured with or without DETA-NONOate (NO donor), L-NAME (NO synthase [S] inhibitor), Arg and (or) LH for 8 h. DETA-NONOate decreased basal and LH-stimulated P4 secretion, and L-NAME increased basal P4 secretion in all groups. In U, Arg decreased LH-stimulated P4 secretion. These data demonstrate that (i) plane of nutrition affects basal P4 secretion by G cells, (ii) the NO donor decreases, NOS inhibitor increases but Arg does not affect basal P4 secretion, and (iii) effects of Arg on LH-stimulated P4 secretion are affected by plane of nutrition in FSH-treated sheep. Thus, plane of nutrition affects G cell function, and the NO system is involved in the regulation of basal and LH-stimulated P4 secretion. The mechanism of the NO system effects on secretory activity of G cells remains to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.