Accumulation of lipid droplets (LD) in luteal cells likely is important for energy storage and steroidogenesis in the highly metabolically active corpus luteum (CL). The objective of this study was to determine the effect of plane of nutrition on progesterone (P4) secretion, and lipid droplet number and size in cultured ovine luteal cells. Ewes were randomly assigned to one of three nutritional groups: control (C; 100% NRC requirements, n=9), overfed (O; 2×C, n=12), or underfed (U; 0.6×C, n=10). Superovulation was induced by follicle stimulating hormone injections. At the early and mid-luteal phases of the estrous cycle, CL were dissected from ovaries, and luteal cells isolated enzymatically. Luteal cells were incubated overnight in medium containing serum in chamber slides. Media were then changed to serum-free and after 24h incubation, media were collected for P4 analysis, and cells were fixed in formalin and stained with BODIPY followed by DAPI staining. Z-stacks of optical sections of large and small luteal cells (LLC and SLC, respectively) were obtained using a laser-scanning microscope. Rendered 3D images of individual LLC and SLC were analyzed for cell volume, and total and individual LD volume, number and percentage of cellular volume occupied by LD by using Imaris software. Concentrations of P4 in serum and media were greater (P<0.05) at the mid than early-luteal phase, and were not affected by nutritional plane. LD total volume and number were greater (P<0.001) in LLC than SLC; however, mean volume of individual LD was greater (P<0.02) in SLC than LLC. In LLC, total LD volume was greater (P<0.02) in O than C and U ewes. In SLC, total LD volume and number was greater (P<0.003) at the mid than early-luteal phase, and percentage of cell volume occupied by LD was greater (P<0.002) in U than C and O ewes. These data demonstrate that both stage of luteal development and nutritional plane affect selected LD measurements and thus may affect luteal functions. Furthermore, these data confirm that LD dynamics differ among parenchymal steroidogenic luteal cell types.
The study was conducted to compare estrous rate, ovulatory response, plasma progesterone concentrations, and conception rate following cervical artificial insemination in goats given a new or once-used controlled internal drug release (CIDR) device with human chorionic gonadotropin (hCG). Fifty-six Thai-native goats with the average age and body weight of 11 months and 17.3 kg received a 14-day treatment with a new CIDR device (Eazi-Breed(TM)CIDR®, Pfizer, NY, USA) or a once-used CIDR device. All goats received a 300-IU injection of hCG (Chorulon®, Intervet International B.V., New Zealand) at the day of CIDR removal to induce ovulation. All goats displaying signs of Estrous behavior were artificially inseminated at 12 h after the onset of estrus with frozen semen. No differences in percentage of estrus and ovulation rates were observed; however, goats that received once-used CIDR devices exhibited shorter (P < 0.05) duration of estrus in comparison with new devices (21.4 ± 1.4 h vs. 26.1 ± 1.1 h) and delayed the onset of estrus (47.0 ± 3.6 h vs. 36.5 ± 1.9 h) and the time of ovulation (74.9 ± 3.9 h vs. 64.5 ± 1.3 h), respectively. Progesterone (P4) concentrations were not significantly different (P > 0.05) between treatments during CIDR device insertion and at the time of CIDR removal except on day 4. No significant differences were found in overall conception rates between the treatments. This study indicates that the once-used CIDR device with hCG could be applied to synchronize the estrus and ovulation in small-size Thai-native goats without negative effects on Estrous behavior, ovulatory response, and plasma P4 concentration.
A study was conducted during hot season to determine the effect of synchronization of ovulation with human chorionic gonadotropin (hCG) on fertility of lactating dairy cows with ovarian cysts. Non cyclic Holstein dairy cows (n = 80) were stratified by parity and diagnosed as having an ovarian cyst. The cows were further identified as follicular or luteal cysts according to the plasma progesterone (P4) concentration and the cystic image of ultrasonography. Cystic cows were randomly assigned to receive treatments (Ovsynch as the control or Ovsynch plus 3000 IU hCG). All cows were artificially inseminated at 16-18 h after the second gonadotropin releasing hormone injection. Cows supplemented with hCG had a greater number of corpus luteum (1.8 ± 0.2 and 0.8 ± 0.3; P < 0.05) and had greater P4 concentration on day 12 than those control cows (6.3 ± 0.3 and 3.9 ± 0.4 ng/ml; P < 0.05). Concentration of cortisol did not differ between groups of cystic cows. No significant differences were found in overall conception rates between the treatments; however, significantly greater conception rate (P = 0.03) was observed in cows with luteal cysts receiving Ovsynch plus hCG. This study highlights that administration of hCG following the Ovsynch-based timed artificial insemination (AI) is more effective than the control Ovsynch by which the hCG affects corpus luteum (CL) development, P4 concentration, and thus improves conception rate in dairy cows with luteal cysts.
The aim of this study was to evaluate lipid droplet (LD) expression in uteri of FSH-treated or nontreated sheep administered with arginine (Arg) or vehicle (saline, Sal) and fed a control (C), excess (overfed, O) or restricted (underfed, U) diet. In experiment 1, ewes from each diet were randomly assigned to Arg or Sal treatments administered three times daily starting on Day 0 of the first estrous cycle until blood sample and uterine tissue collection at the early- or mid-luteal phase of the second estrous cycle or the late-luteal phase of the first estrous cycle. In experiment 2, ewes were injected twice daily with FSH on Days 13 to 15 of the first estrous cycle, and blood samples and uterine tissue were collected at the early- and mid-luteal phases of the second estrous cycle. Cryopreserved in optimum cutting temperature (OCT) compound, cross-sections of uterine horn were stained with boron-dipyrromethene (BODIPY; marker of LDs) followed by 4',6-diamidino-2-phenylindole (DAPI) staining and image analysis to determine the proportion (%) of area occupied by LD in luminal epithelium (LE) and endometrial glands (EGs). Control ewes maintained, O ewes gained, and U ewes lost body weight during the experiments. Serum progesterone concentration was not affected by nutritional plane or Arg treatment and was 5.5-fold greater in FSH- than Sal-treated ewes. LDs were detected in LE and superficial EG (close to LE) but not deep EG, or other uterine compartments, and area occupied by LD was greater in LE than in EG. In experiment 1, in LE and EG, area occupied by LDs was greater in C than in O or U; greater in Arg than in Sal; and greater at the late-, less at mid-, and least at early-luteal phases. In experiment 2, in LE and EG, area occupied by LDs was greater at mid- than in early-luteal phase. Comparison of data from FSH-treated and nontreated ewes (e.g., experiment 1 vs. experiment 2) demonstrated that FSH increased the area occupied by LD in LE and EG regardless of diet. Interactions between FSH treatment, stage of the estrous cycle, and plane of nutrition demonstrated that FSH increased the area occupied by LD in LE and EG at the mid-luteal phase in O and U. Thus, LDs are differentially distributed in uterine compartments, and area occupied by LD in endometrium is affected by nutritional plane, Arg or FSH, and stage of the estrous cycle. Such changes in dynamics of LD in the endometrium during the estrous cycle indicate their specific role in uterine functions.
To determine the effects of Follicle Stimulating Hormone (FSH) treatment and subsequent withdrawal on uterine proliferation and estrogen receptor (ESR), Brahman crossbred heifers (n = 12) were twice daily injected with FSH (4, 3, and 2 mg/injection) on Days 17–19 of the estrous cycle (FSH 3 days) and (4 and 3 mg/injection) on Days 17–18 (FSH 2 days) and withdrawal with saline on Day 19 and (4 mg/injection) on Day 17 (FSH 1 day) and withdrawal with saline on Days 18–19. Uterine tissue was subjectively collected on Day 20 and microscopically classified to four regions: endometrial stroma (ES), surface endometrial gland (EG), deep endometrial gland (DG), and myometrium (Myo). The cell proliferation marker, Ki‐67, was quantified as labeling index (LI) in uterine regions, and tissues were immunostained to detect ESR2 followed by image analysis. The LI of ES, EG, and DG was greater (P = 0.0018, P = 0.0005, and P = 0.0103; respectively) in heifers received FSH for 3 days. The expression of ESR2 protein on ES and EG was greatest (P < 0.0001 and P = 0.0036, respectively) in FSH 3 days‐treated group. Thus, FSH administration during proestrus stimulates uterine cell proliferation, and ESR2 expressions are affected by FSH during proestrus and differentially distributed in the uterine regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.