In this paper, the improved turbine power matching of passive wind energy systems for dcconnected battery storage applications with an impedance matching method is investigated. The passive system uses a direct-drive permanent magnet synchronous generator and is directly connected via a diode rectifier to the dc fixed-voltage battery storage. To improve power matching, an external inductance is added to the passive system between the generator and the diode rectifier. A static finite element based solution method is proposed to accurately calculate the necessary external inductance to achieve near maximum power point matching. It is shown that the proposed finite element based calculation method is computationally efficient and excellently suited for generator design optimization, which is critical for this application. It is also shown that by rewinding existing machines for the correct cut-in speed and adding the external inductance for improved power matching, existing machines can be effectively recycled for passive wind energy systems. The proposed static finite element solution method's accuracy and improved power matching are confirmed with measured results on a sub 5 kW power level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.