The proteasome is responsible for degradation of substrates of the ubiquitin pathway. 20S proteasomes are cylindrical particles with subunits arranged in a stack of four heptameric rings. The outer rings are composed of ␣ subunits, and the inner rings are composed of  subunits. A wellcharacterized archaeal proteasome has a single type of each subunit, and the N-terminal threonine of the  subunit is the active-site nucleophile. Yeast proteasomes have seven different  subunits and exhibit several distinct peptidase activities, which were proposed to derive from disparate active sites. We show that mutating the N-terminal threonine in the yeast Pup1  subunit eliminates cleavage after basic residues in peptide substrates, and mutating the corresponding threonine of Pre3 prevents cleavage after acidic residues. Surprisingly, neither mutation has a strong effect on cell growth, and they have at most minor effects on ubiquitin-dependent proteolysis. We show that Pup1 interacts with Pup3 in each  subunit ring. Our data reveal that different proteasome active sites contribute very differently to protein breakdown in vivo, that contacts between particular subunits in each  subunit ring are critical for active-site formation, and that active sites in archaea and different eukaryotes are highly similar.
Proteins targeted for degradation by the ubiquitinproteasome system are degraded by the 26S proteasome. The core of this large protease is the 20S proteasome, a barrel-shaped structure made of a stack of four heptameric rings. Of the 14 different subunits that make up the yeast 20S proteasome, three have proteolytic active sites: Doa3/β5, Pup1/β2 and Pre3/β1. Each of these subunits is synthesized with an N-terminal propeptide that is autocatalytically cleaved during particle assembly. We show here that the propeptides have both common and distinct functions in proteasome biogenesis. Unlike the Doa3 propeptide, which is crucial for proteasome assembly, the Pre3 and Pup1 propeptides are dispensable for cell viability and proteasome formation. However, mutants lacking these propeptide-encoding elements are defective for specific peptidase activities, are more sensitive to environmental stresses and have subtle defects in proteasome assembly. Unexpectedly, a critical function of the propeptide is the protection of the N-terminal catalytic threonine residue against N α -acetylation. For all three propeptide-deleted subunits, activity of the affected catalytic center is fully restored when the Nat1-Ard1 N α -acetyltransferase is mutated. In addition to delineating a novel function for proteasome propeptides, these data provide the first biochemical evidence for the postulated participation of the α-amino group in the proteasome catalytic mechanism.
Biogenesis of the 20S proteasome is tightly regulated. The N-terminal propeptides protecting the active-site threonines are autocatalytically released only on completion of assembly. However, the trigger for the self-activation and the reason for the strict conservation of threonine as the active site nucleophile remain enigmatic. Here we use mutagenesis, X-ray crystallography and biochemical assays to suggest that Lys33 initiates nucleophilic attack of the propeptide by deprotonating the Thr1 hydroxyl group and that both residues together with Asp17 are part of a catalytic triad. Substitution of Thr1 by Cys disrupts the interaction with Lys33 and inactivates the proteasome. Although a Thr1Ser mutant is active, it is less efficient compared with wild type because of the unfavourable orientation of Ser1 towards incoming substrates. This work provides insights into the basic mechanism of proteolysis and propeptide autolysis, as well as the evolutionary pressures that drove the proteasome to become a threonine protease.
The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/a3 subunit is deleted. Purified pre9D proteasomes show a two-fold enrichment for the Pre6/a4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure-guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When Arabidopsis PAD1/a4 is expressed in yeast, it complements not only pre6D but also pre6D pre9D mutants; therefore, the plant a4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in pre9D cells, suggesting an advantage for Pre9 over Pre6 incorporation at the a3 position that facilitates correct assembly.
Purines and pyrimidines are indispensable to all life, performing many vital functions for cells: ATP serves as the universal currency of cellular energy, cAMP and cGMP are key second messenger molecules, purine and pyrimidine nucleotides are precursors for activated forms of both carbohydrates and lipids, nucleotide derivatives of vitamins are essential cofactors in metabolic processes, and nucleoside triphosphates are the immediate precursors for DNA and RNA synthesis. Unlike their mammalian and insect hosts, Leishmania lack the metabolic machinery to make purine nucleotides de novo and must rely on their host for preformed purines. The obligatory nature of purine salvage offers, therefore, a plethora of potential targets for drug targeting, and the pathway has consequently been the focus of considerable scientific investigation. In contrast, Leishmania are prototrophic for pyrimidines and also express a small complement of pyrimidine salvage enzymes. Because the pyrimidine nucleotide biosynthetic pathways of Leishmania and humans are similar, pyrimidine metabolism in Leishmania has generally been considered less amenable to therapeutic manipulation than the purine salvage pathway. However, evidence garnered from a variety of parasitic protozoa suggests that the selective inhibition of pyrimidine biosynthetic enzymes offers a rational therapeutic paradigm. In this chapter, we present an overview of the purine and pyrimidine pathways in Leishmania, make comparisons to the equivalent pathways in their mammalian host, and explore how these pathways might be amenable to selective therapeutic targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.