Mushrooms, unique edible fungi, contain several essential nutrients and bioactive compounds which may positively influence cardiometabolic health. Despite a long history of consumption, the health benefits of mushrooms are not well documented. We conducted a systematic review to assess the effects of and associations between mushroom consumption and cardiometabolic disease (CMD)-related risk factors and morbidities/mortality. We identified 22 articles (11 experimental and 11 observational) from five databases meeting our inclusion criteria. Limited evidence from experimental research suggests mushroom consumption improves serum/plasma triglycerides and hs-CRP, but not other lipids, lipoproteins, measures of glucose control (fasting glucose and HbA1c), or blood pressure. Limited evidence from observational research (seven of 11 articles with a posteriori assessments) suggests no association between mushroom consumption and fasting blood total or LDL cholesterol, glucose, or morbidity/mortality from cardiovascular disease, coronary heart disease, or type 2 diabetes mellitus. Other CMD health outcomes were deemed either inconsistent (blood pressure, HDL cholesterol, and triglycerides) or insufficient (HbA1c/hyperglycemia, hs-CRP, cerebrovascular disease, and stroke). The majority of the articles vetted were rated “poor” using the NHLBI study quality assessment tool due to study methodology and/or poor reporting issues. While new, high-quality experimental and observational research is warranted, limited experimental findings suggest greater mushroom consumption lowers blood triglycerides and hs-CRP, indices of cardiometabolic health.
Mushrooms contain multiple essential nutrients and health-promoting bioactive compounds, including the amino acid L-ergothioneine. Knowledge of the chemical composition of different mushroom varieties will aid research on their health-promoting properties. We compared the metabolomes of fresh raw white button, crimini, portabella, lion’s mane, maitake, oyster, and shiitake mushrooms using untargeted liquid chromatography mass spectrometry (LC/MS)-based metabolomics. We also quantified amino acid concentrations, including L-ergothioneine, a potential antioxidant which is not synthesized by plants or animals. Among the seven mushroom varieties, more than 10,000 compounds were detected. Principal Component Analysis indicated mushrooms of the same species, Agaricus Bisporus (white button, portabella, crimini), group similarly. The other varieties formed individual, distinct clusters. A total of 1344 (520 annotated) compounds were detected in all seven mushroom varieties. Each variety had tens-to-hundreds of unique-to-mushroom-variety compounds. These ranged from 29 for crimini to 854 for lion’s mane. All three Agaricus bisporus varieties had similar amino acid profiles (including detection of all nine essential amino acids), while other varieties had less methionine and tryptophan. Lion’s mane and oyster mushrooms had the highest concentrations of L-ergothioneine. The detection of hundreds of unique-to-mushroom-variety compounds emphasizes the differences in chemical composition of these varieties of edible fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.