Wetlands are the largest global source of atmospheric methane (CH), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH in the tropics, consistently underestimate the atmospheric burden of CH determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH emissions. Here we report CH fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δC) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH emissions of 42.7 ± 5.6 teragrams of CH a year for the Amazon basin, based on regular vertical lower-troposphere CH profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH source when trees are combined with other emission sources.
Arctium lappa L. (Asteraceae) is used in folk medicine around the World, and shows several kinds of biological activity, particularly in vitro antitumor activity in different cell lines. This study evaluated the antiproliferative activity of the crude extract, semipurified fractions, and isolated compounds from the leaves of A. lappa, through bioassay-guided testing in Caco-2 cells. The crude extract was obtained with a 50% hydroethanolic extract and then partitioned with hexane, ethyl acetate, and n-butanol. The ethyl-acetate fraction (EAF) showed antiproliferative activity. This fraction was subjected to sequential column chromatography over silica gel to afford onopordopicrin (1), mixtures of 1 with dehydromelitensin-8-(4'-hydroxymethacrylate) (2), a mixture of 2 with dehydromelitensin (3), mixture of 1 with melitensin (4), dehydrovomifoliol (5), and loliolide (6). The compounds were identified by spectroscopic methods (NMR, MS) and comparison with literature data. This is the first description of compounds 2–5 from this species. The compounds tested in Caco-2 cells showed the following CC50 (µg/mL) values: 1: 19.7 ± 3.4, 1 with 2: 24.6 ± 1.5, 2 with 3: 27 ± 11.7, 1 with 4: 42 ± 13.1, 6 30 ± 6.2; compound 5 showed no activity.
Recebido em 7/8/11; aceito em 11/1/12; publicado na web em 15/5/12 This work describes the phytochemical study of the methanol extract obtained from leaves of Guarea macrophylla, leading to the isolation and identification of three flavonoid glycosides (quercetin 3-O-b-D-glucopyranoside, quercetin 3-O-b-D-galactopyranoside, kaempferol 7-O-b-D-glucopyranoside) and a neolignan glucoside, dehydrodiconiferyl alcohol-4-b-D-glucoside. All compounds were identified by a combination of spectroscopic methods ( 1 H, 1D, 2D NMR, 13 C and UV), ESI-MS and comparison with the literature data. This is the first report of flavonoids in the genus Guarea and of a neolignan glucoside in the Meliaceae family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.