Some known self-compacting concrete (SCC) mix-designs are based on the lowest void content as a purpose of an ideal packing. However, a composition with a lower void content is not a guarantee of good synergy between the largest and smallest grain in the fresh state. The purpose of this study was to identify and evaluate different packing parameters in the aggregates gradations that influence on the self-compactability. Nine aggregates combinations (4 binaries, 4 ternaries and 1 quaternary) were used for determination of nine gradations. Tests as slump-flow, L-box and V-funnel were used. The distribution coefficient (q) was determined by the Alfred model. The results showed that not all values of q (between 0.201 and 0.253) attended the values given for SCC, and the gradations with the lowest difference among the coarse and fine particles, higher void content, continuous distributions and 50% of coarse aggregates had better performance.
The objective of this work is to apply a stochastic point process technique in the evaluation of aggregate composition parameters for concrete. Several experimental, numeric and computational methods have been used for determining an ideal packing of aggregates for concrete, based on the principle of the lowest content of voids. Experimental method is quite hard-working. On the other hand, the mathematical and computational models need potent computer and be tested experimentally. Equipment and computational methods have been developed, to provide images of the particle distribution, approaching the actual distribution of aggregates and allowing to obtain ideal aggregates compositions. This work uses a stochastic point process, based on the point processes method, which a simple sequential inhibition (SSI) process on the arbitrary closed region places the particles. The SSI generates image of spherical particles distributions for viewing and checking compliance of parameters of aggregates compositions. The characteristics of aggregates (porosity, granulometry, proportion of each aggregate composition, and specific mass) and the problem's domain are input data. The SSI's output data of interest are virtual image of particles distribution, particles composition, porosity of each composition, diameter and number of particles. From SSI's output data, it can be determined the packing factor and a histogram of particles diameters. This information is evaluated and compared with the input composition. As a result, the stochastic SSI demonstrates to be efficient in comparing the output and experimental data, complying with the purpose of the study.
RESUMO O concreto autoadensável (CAA) tem sido produzido por diferentes métodos de dosagem. Alguns são baseados na determinação da pasta e do esqueleto granular para o alcance da autoadensabilidade. A busca por empacotamento de agregados com baixo índice de vazios, que leva a uma redução do volume de pasta, tem sido o ideal, mas este modelo pode não ser o melhor para o CAA. Sistemas de partículas com reduzidos vazios e teor de pasta pode comprometer a autoadensabilidade do CAA. Por outro lado, composições de agregados com dosagens igualitárias entre partículas grossas e finas têm sido proposto com sucesso. Neste contexto, o artigo visa analisar composições de agregados com dosagens de agregados graúdos e miúdos equiparados, avaliando suas distribuições granulométricas contínuas e descontínuas, além de determinar parâmetros de graduação, que possam influenciar e contribuir para o alcance da autoadensabilidade do CAA. As propriedades de autoadensabilidade foram verificadas pelos testes de espalhamento, índice de estabilidade visual (IEV), funil V e caixa L. As propriedades determinadas no estado endurecido foram: resistência à compressão, módulo de elasticidade estático, absorção de água por imersão, índice de vazios e massa específica. Para isso, foram utilizados corpos-de-prova cilíndricos (10 cm x 20 cm). Os resultados desta pesquisa mostraram que os parâmetros de graduação de agregados, obtidos para cada proporção e distribuição granulométrica das composições de agregados estudadas, ressaltaram o efeito da presença de diâmetros de partículas miúdas em relação às partículas graúdas, podendo-se perceber a contribuição desses parâmetros na obtenção de distribuições contínuas e descontínuas mais fechadas para concreto autoadensável em atendimento às propriedades no estado fresco e endurecido.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.