A possible alternative to minimize the effects of salt and drought stress is the introduction of species tolerating these conditions with a good adaptability in terms of quantitative and qualitative yield. So quinoa (Chenopodium quinoa Willd.) cultivar Titicaca was grown in an open field trial in 2009 and 2010 to investigate the effects of salt and drought stress on quantitative and qualitative aspects of the yield. Treatments irrigated with well water (Q100, Q50 and Q25) and corresponding treatments irrigated with saline water (Q100S, Q50S and Q25S) with an electrical conductivity (ECw) of 22 dS m−1 were compared. Salt and drought stress in both years did not cause significant yield reduction, while the highest level of saline water resulted in higher mean seed weight and as a consequence the increase in fibre and total saponin content in quinoa seeds.
Chenopodium quinoa Willd., a high quality grain crop, is resistant to abiotic stresses (drought, cold, and salt) and offers an optimal source of protein. Quinoa represents a symbol of crop genetic diversity across the Andean region. In recent years, this crop has undergone a major expansion outside its countries of origin. The activities carried out within the framework of the International Year of Quinoa provided a great contribution to raise awareness on the multiple benefits of quinoa as well as to its wider cultivation at the global level. FAO is actively involved in promoting and evaluating the cultivation of quinoa in 26 countries outside the Andean region with the aim to strengthen food and nutrition security. The main goal of this research is to evaluate the adaptability of selected quinoa genotypes under different environments outside the Andean region. This paper presents the preliminary results from nine countries. Field evaluations were conducted during 2013/2014 and 2014/2015 in Asia (Kyrgyzstan and Tajikistan), and the Near East and North African countries (Algeria, Egypt, Iraq, Iran, Lebanon, Mauritania, and Yemen). In each country, the trials were carried out in different locations that globally represent the diversity of 19 agrarian systems under different agro-ecological conditions. Twenty-one genotypes of quinoa were tested using the same experimental protocol in all locations consisting in a randomized complete block design (RCBD) with three replicates. Some genotypes showed higher yields and the Q18 and Q12 landraces displayed greater adaptation than others to new environmental conditions. The Q21 and Q26 landraces were evaluated with stable and satisfactory levels of yield (>1 t.ha−1) in each of the different trial sites. This production stability is of considerable importance especially under climate change uncertainty. While these results suggest that this Andean crop is able to grow in many different environments, social, and cultural considerations remain crucial regarding its possible introduction as a staple food in new cropping systems around the world.
Quinoa is a pseudocereal from South America that has received increased interest around the world because it is a good source of different nutrients and rich in antioxidant compounds. Thus, this study has focused on the effects of different agronomic variables, such as irrigation and salinity, on the phenolic and saponin profiles of quinoa. It was observed that irrigation with 25% of full water restitution, with and without the addition of salt, was associated with increases in free phenolic compounds of 23.16 and 26.27%, respectively. In contrast, bound phenolic compounds were not affected by environmental stresses. Saponins decreased if samples were exposed to drought and saline regimens. In situations of severe water deficit, the saponins content decreased 45%, and 50% when a salt stress was added. The results suggest that irrigation and salinity may regulate the production of bioactive compounds in quinoa, influencing its nutritional and industrial values.
Chenopodium quinoa Willd. or ‘quinoa’ is a plant having many uses as a food. Importantly, it offers an alternative to normal cereals in coeliac diets because its seeds are gluten‐free. For this reason, it is worthwhile to determine the properties of quinoa and to evaluate the suitability of this crop for the south of Italy. At the CNR‐ISAFoM’s experimental station in Vitulazio (CE), a 2‐year (2006–2007) field trial under rain‐fed conditions was carried out to compare the two quinoa genotypes: KVLQ520Y (KV) and Regalona Baer (RB). Comparison was also made between two sowing dates for KV. The results showed that April was the best sowing time for quinoa in our typical Mediterranean region. Of the two genotypes, RB recorded better growth and productivity, apparently being more tolerant to abiotic stress (high temperatures associated with water stress). Chemical analyses reveal the potential of quinoa seed as a valuable ingredient in the preparation of cereal foods having improved nutritional characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.