Single-phase Ce3+-doped BaTiO3 powders described by the nominal formula Ba1−xCexTi1−x/4O3 with x = 0.005 and 0.05 were synthesized by the acetate variant of the sol-gel method. The structural parameters, particle size, and morphology are strongly dependent on the Ce3+ content. From these powders, dense ceramics were prepared by conventional sintering at 1300 °C for 2 h, as well as by spark plasma sintering at 1050 °C for 2 min. For the conventionally sintered ceramics, the XRD data and the dielectric and hysteresis measurements reveal that at room temperature, the specimen with low cerium content (x = 0.005) was in the ferroelectric state, while the samples with significantly higher Ce3+ concentration (x = 0.05) were found to be in the proximity of the ferroelectric–paraelectric phase transition. The sample with low solute content after spark plasma sintering exhibited insulating behavior, with significantly higher values of relative permittivity and dielectric losses over the entire investigated temperature range relative to the conventionally sintered sample of similar composition. The spark-plasma-sintered Ce-BaTiO3 specimen with high solute content (x = 0.05) showed a fine-grained microstructure and an almost temperature-independent colossal dielectric constant which originated from very high interfacial polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.