Given their increasing importance in a variety of applications, the preparation of carbon fibers with well-defined chemical structures and innocuous byproducts has garnered a growing interest over the past decade. We report the preparation of medium molecular weight poly(methyl vinyl ketone) (PMVK) as a potential carbon fiber precursor material which can easily undergo carbonization via the well-known, acid-catalyzed aldol condensation with water as a sole byproduct. Rheological studies further show that PMVK (MW ∼ 50 kg/mol) exhibits excellent physical and thermal properties for the spinning of single and multifilament fibers and easily produces carbon yields of 25% at temperatures as low as 250 °C. Analysis of the carbonized product also suggests a more defect-free structure than commercially available carbon fibers.
While substantial progress has been achieved in the design of more biocompatible nanoparticles (NP), detailed data are required on the precise interactions of NPs and their environment for more reliable interpretation of toxicity results. Therefore, this study aims to investigate the interaction of two quantum dots (QDs) of the same core material CdSe/ZnS coated with two different amphiphilic polymers, with two well-established mammalian cell lines representing possible sites of QD accumulation. Results are linked to either extracellular QD concentrations (given dose) or cellular QD levels (number of internalized particles). In this study, QD internalization, effects on cellular homeostasis, and consequent inflammatory and cytoskeletal alterations caused by these QDs were explored. Fluorescence imaging techniques, including; image-based flow cytometry, confocal microscopy and high-content imaging with the InCell analyzer were used in a multiparametric methodology to evaluate cell viability, induction of oxidative stress, mitochondrial health, cell cytoskeletal functionality and changes in cellular morphology. Gene expression arrays were also carried out on 168 key genes involved in the cytoskeletal architecture and inflammatory pathway accompanied with the analysis of focal adhesions as key markers for actin-mediated signaling. Our results show distinct differences between the PMA and PTMAEMA-stat-PLMA coated QDs, which could mainly be attributed to differences in their cellular uptake levels. The toxicity profiles of both QD types changed drastically depending on whether effects were expressed in terms of given dose or internalized particles. Both QDs triggered alterations to important but different genes, most remarkably the up-regulation of tumor suppression and necrosis genes and the down regulation of angiogenesis and metastasis genes at sub-cytotoxic concentrations of these QDs.
Polyhydroxyethyl methacrylate-linked by-polysulfone amphiphilic polymer conetworks of two types of segments with T g above room temperature are presented. The conetworks are prepared by free radical copolymerization of methacryloyl-terminated PSU macromers with 2-ethyl methacrylate, followed by removal of the TMS protecting groups by acidic hydrolysis. Phase separation in the nanometer range due to the immiscibility of the two covalently linked segments is observed using transmission electron and scanning force microscopy. The swelling of the conetworks in water and methanol as polar solvents and chloroform as nonpolar solvent are studied gravimetrically and then in a more detailed fashion by solid-state NMR spectroscopy. Selective swelling and also targeted loading of a small organic model compound specifically to one of the two phases are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.