The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.
Non-valence states in neutral molecules (Rydberg states) have well-established roles and importance in photochemistry, however, considerably less is known about the role of non-valence states in photo-induced processes in anions. Here, femtosecond time-resolved photoelectron imaging is used to show that photoexcitation of the S1(ππ*) state of the methyl ester of deprotonated para-coumaric acid – a model chromophore for photoactive yellow protein (PYP) – leads to a bifurcation of the excited state wavepacket. One part remains on the S1(ππ*) state forming a twisted intermediate, whilst a second part leads to the formation of a non-valence (dipole-bound) state. Both populations eventually decay independently by vibrational autodetachment. Valence-to-non-valence internal conversion has hitherto not been observed in the intramolecular photophysics of an isolated anion, raising questions into how common such processes might be, given that many anionic chromophores have bright valence states near the detachment threshold.
Citation for published item:enst¤ oterD gte F nd henD ghrlie F nd erletD tn F F @PHIUA 9ghromophores of hromophores X ottomEup r¤ ukel piture of the exited sttes of phototive proteinsF9D hysil hemistry hemil physisFD IW @RRAF ppF PWUUPEPWUUWF Further information on publisher's website:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Here, we present a reductionist approach to gain fundamental insight into the evolution of electronic structure as the chromophore increases in complexity from phenolate to that in GFP. Using frequency-and angle-resolved photoelectron spectroscopy, in combination with electronic structure theory, the onset of excited states that are responsible for the characteristic spectroscopic features in biochromophores are determined. A comprehensive, yet intuitive picture of the effect of phenolate functionalisation is developed based on simple Hückel theory. Specifically, the first two bright excited states can be constructed from a linear combination of molecular orbitals localised on the phenolate and para-substituent groups. This essential interaction is first observed for p-vinyl-phenolate. This bottom-up approach offers a readily accessible framework for the design of photoactive chromophores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.