Citation for published item:enst¤ oterD gte F nd henD ghrlie F nd erletD tn F F @PHIUA 9ghromophores of hromophores X ottomEup r¤ ukel piture of the exited sttes of phototive proteinsF9D hysil hemistry hemil physisFD IW @RRAF ppF PWUUPEPWUUWF Further information on publisher's website: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Here, we present a reductionist approach to gain fundamental insight into the evolution of electronic structure as the chromophore increases in complexity from phenolate to that in GFP. Using frequency-and angle-resolved photoelectron spectroscopy, in combination with electronic structure theory, the onset of excited states that are responsible for the characteristic spectroscopic features in biochromophores are determined. A comprehensive, yet intuitive picture of the effect of phenolate functionalisation is developed based on simple Hückel theory. Specifically, the first two bright excited states can be constructed from a linear combination of molecular orbitals localised on the phenolate and para-substituent groups. This essential interaction is first observed for p-vinyl-phenolate. This bottom-up approach offers a readily accessible framework for the design of photoactive chromophores.
An anion photoelectron imaging study probing the sensitivity of the photoelectron angular distribution (PAD) to conformational changes is presented. The PADs of a series of para-substituted phenolate anions is compared with those calculated using the Dyson orbital formalization. Good agreement was attained for the two observed direct detachment channels of all anions, except for the lowest-energy detachment channel of para-ethyl phenolate for which two conformations exist that yield very different PADs. The conformational freedom leads to an observed PAD that is the incoherent sum of the PADs from all conformers populated under experimental conditions. In contrast, a second detachment channel shows no sensitivity to the conformational flexibility of para-ethyl phenolate. Our results show that PADs can provide detailed information about the electronic structure of the anion and its conformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.