The increasing awareness of climate change and human capital issues is shifting companies towards aspects other than traditional financial earnings. In particular, the changing behaviors towards sustainability issues of the global community and the availability of environmental, social and governance (ESG) indicators are attracting investors to socially responsible investment decisions. Furthermore, whereas the strategic importance of ESG metrics has been particularly studied for private enterprises, little attention have received public companies. To address this gap, the present work has three aims—1. To predict the accuracy of main financial indicators such as the expected Return of Equity (ROE) and Return of Assets (ROA) of public enterprises in Europe based on ESG indicators and other economic metrics; 2. To identify whether ESG initiatives affect the financial performance of public European enterprises; and 3. To discuss how ESG factors, based on the findings of aims #1 and #2, can contribute to the advancements of the current debate on Corporate Social Responsibility (CSR) policies and practices in public enterprises in Europe. To fulfil the above aims, we use a combined approach of machine learning (ML) techniques and inferential (i.e., ordered logistic regression) model. The former predicts the accuracy of ROE and ROA on several ESG and other economic metrics and fulfils aim #1. The latter is used to test whether any causal relationships between ESG investment decisions and ROA and ROE exist and, whether these relationships exist, to assess their magnitude. The inferential analysis fulfils aim #2. Main findings suggest that ML accurately predicts ROA and ROE and indicate, through the ordered logistic regression model, the existence of a positive relationship between ESG practices and the financial indicators. In addition, the existing relationship appears more evident when companies invest in environmental innovation, employment productivity and diversity and equal opportunity policies. As a result, to fulfil aim #3 useful policy insights are advised on these issues to strengthen CSR strategies and sustainable development practices in European public enterprises.
After reviewing the main EU policy documents on the plastic waste issue, this work conceptualises an analysis framework to investigate farmers' attitudes to marketbased tools (i.e., subsidies, tax-credits, and payback mechanisms in extended producer responsibility schemes) through which the introduction of an operational scheme for a better management of their plastic waste can be incentivised in line with the 2018 European Strategy for Plastics in a Circular Economy. A total number of 1,783 farmers responded to a purpose-built questionnaire. Results show that most of the plastic waste they produce is piping and packaging and that tax credit represents their most favoured incentivising tool.
K E Y W O R D Sagriculture and plastic, circular economy, European strategy on plastic, extended producer responsibility, fiscal measures, new plastics economy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.