Eukaryotic E2Fs are conserved transcription factors playing crucial and antagonistic roles in several pathways related to cell division, DNA repair, and differentiation. In plants, these processes are strictly intermingled at the growing zone to produce postembryonic development in response to internal signals and environmental cues. Of the six AtE2F proteins found in Arabidopsis (Arabidopsis thaliana), only AtE2Fa and AtE2Fb have been clearly indicated as activators of E2F-responsive genes. AtE2Fa activity was shown to induce S phase and endoreduplication, whereas the function of AtE2Fb and the interrelationship between these two transcription factors was unclear. We have investigated the role played by the AtE2Fb gene during cell cycle and development performing in situ RNA hybridization, immunolocalization of the AtE2Fb protein in planta, and analysis of AtE2Fb promoter activity in transgenic plants. Overexpression of AtE2Fb in transgenic Arabidopsis plants led to striking modifications of the morphology of roots, cotyledons, and leaves that can be ascribed to stimulation of cell division. The accumulation of the AtE2Fb protein in these lines was paralleled by an increased expression of E2F-responsive G1/S and G2/M marker genes. These results suggest that AtE2Fa and AtE2Fb have specific expression patterns and play similar but distinct roles during cell cycle progression.The identification of various components of the plant cell cycle machinery has revealed remarkable similarities with the regulatory pathways found in animal cells, for which a key role is exerted by the E2F/DP family of transcription factors. The genome of the model plant Arabidopsis (Arabidopsis thaliana) contains eight genes of this family (six E2Fs and two DPs), whereas in mammalian cells 10 E2F/DP members have been discovered (eight E2Fs and two DPs; Attwooll et al., 2004;Christensen et al., 2005;Dimova and Dyson, 2005;Maiti et al., 2005). Most mammalian E2F proteins (E2F1-5) and three of the Arabidopsis members (AtE2Fa-c) show a similar domain organization, characterized by a highly conserved DNAbinding domain followed by a DP heterodimerization domain and a C-terminal transactivating domain, containing the pocket protein-binding region. The mammalian E2F6 lacks the carboxy-terminal transactivating region. Six mammalian E2Fs (E2F1-6) and three Arabidopsis E2F proteins (AtE2Fa-c) bind DNA by forming heterodimers with the distantly related DP proteins that contribute a second DNA-binding domain for binding to the consensus E2F cis-elements found in several E2F-responsive promoters. The remaining Arabidopsis E2Fs (AtE2Fd, e, and f/DEL2, 1, and 3) and the E2F7 and E2F8 proteins of mammalian cells only contain conserved duplicated DNA-binding domains. They cannot form heterodimers with DP proteins, but their duplicated DNA-binding domains allow autonomous binding to the consensus E2F sites (Mariconti et al
Tail-anchored (TA) proteins are bound to membranes by a hydrophobic sequence located very close to the C-terminus, followed by a short luminal polar region. Their active domains are exposed to the cytosol. TA proteins are synthesized on free cytosolic ribosomes and are found on the surface of every subcellular compartment, where they play various roles. The basic mechanisms of sorting and targeting of TA proteins to the correct membrane are poorly characterized. In mammalian cells, the net charge of the luminal region determines the sorting to the correct target membrane, a positive charge leading to mitochondria and negative or null charge to the endoplasmic reticulum (ER). Here sorting signals of TA proteins were studied in plant cells and compared with those of mammalian proteins, using in vitro translation-translocation and in vivo expression in tobacco protoplasts or leaves. It is shown that rabbit cytochrome b5 (cyt b5) with a negative charge is faithfully sorted to the plant ER, whereas a change to a positive charge leads to chloroplast targeting (instead of to mitochondria as observed in mammalian cells). The subcellular location of two cyt b5 isoforms from Arabidopsis thaliana (At1g26340 and At5g48810, both with positive net charge) was then determined. At5g48810 is targeted to the ER, and At1g26340 to the chloroplast envelope. The results show that the plant ER, unlike the mammalian ER, can accommodate cytochromes with opposite C-terminal net charge, and plant cells have a specific and as yet uncharacterized mechanism to sort TA proteins with the same positive C-terminal charge to different membranes.
The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol l catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol l, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol l, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol l in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol l is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes.
An emerging view of plant cell cycle regulators, including the E2F transcription factors, implicates them in the integration of cell proliferation and development. Arabidopsis encodes six E2F proteins that can act as activators or repressors of E2F-responsive genes. E2FA, E2FB and E2FC interact with the retinoblastoma-like RBR protein and bind to DNA together with their DP partners. In contrast, E2FD, E2FE and E2FF (also known as DEL2, DEL1 and DEL3) are atypical E2Fs that possess duplicated DNA binding regions, lack trans-activating and RBR-binding domains and are believed to act as transcriptional inhibitors/repressors. E2FE/DEL1 has been shown to inhibit the endocycle and E2FF/DEL3 appears to control cell expansion but the role of E2FD/DEL2 has not been reported so far. In this study, we investigated the expression of E2FD/DEL2 and analysed the accumulation of its product. These studies revealed that E2FD/DEL2 accumulation is subject to negative post-translational regulation mediated by the plant hormone auxin. Moreover, the analysis of mutant and transgenic plants characterized by altered expression of E2FD/DEL2 has revealed that this atypical E2F can affect plant growth by promoting cell proliferation and repressing cell elongation. Overexpression of E2FD/DEL2 increased the expression of E2FA, E2FB and E2FE/DEL1 whereas its inactivation led to the up-regulation of genes encoding repressors of cell division. These results suggest that E2FD/DEL2 is part of a regulatory network that controls the balance between cell proliferation and development in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.