This review on graphene, a one atom thick, two-dimensional sheet of carbon atoms, starts with a general description of the graphene electronic structure as well as a basic experimental toolkit for identifying and handling this material. Owing to the versatility of graphene properties and projected applications, several production techniques are summarized, ranging from the mechanical exfoliation of high quality graphene to the direct growth on carbides or metal substrates and from the chemical routes using graphene oxide to the newly developed approach at the molecular level. The most promising and appealing properties of graphene are summarized from an exponentially growing literature, with a particular attention to matching production methods to characteristics and to applications. In particular, we report on the high carrier mobility value in suspended and annealed samples for electronic devices, on the thickness-dependent optical transparency and, in the mechanical section, on the high robustness and full integration of graphene in sensing device applications. Finally, we emphasize on the high potential of graphene not only as a post-silicon materials for CMOS device application but more ambitiously as a platform for post-CMOS molecular architecture in electronic information processing.Comment: Review article: 21 pages, 243 references, 10 figures. Accepted for publication in Carbon, 201
Traditional fibre-reinforced composite materials with excellent in-plane properties fare poorly when out-of-plane through-thickness properties are important. Composite architectures with fibres designed orthogonal to the two-dimensional (2D) layout in traditional composites could alleviate this weakness in the transverse direction, but all of the efforts so far have only produced limited success. Here, we unveil an approach to the 3D composite challenge, without altering the 2D stack design, on the basis of the concept of interlaminar carbon-nanotube forests that would provide enhanced multifunctional properties along the thickness direction. The carbon-nanotube forests allow the fastening of adjacent plies in the 3D composite. We grow multiwalled carbon nanotubes on the surface of micro-fibre fabric cloth layouts, normal to the fibre lengths, resulting in a 3D effect between plies under loading. These nanotube-coated fabric cloths serve as building blocks for the multilayered 3D composites, with the nanotube forests providing much-needed interlaminar strength and toughness under various loading conditions. For the fabricated 3D composites with nanotube forests, we demonstrate remarkable improvements in the interlaminar fracture toughness, hardness, delamination resistance, in-plane mechanical properties, damping, thermoelastic behaviour, and thermal and electrical conductivities making these structures truly multifunctional.
Jet stream: Multi‐walled carbon nanotubes grown by catalytic chemical vapor deposition were carboxylated in a two‐step oxidation process. An aqueous dispersion of the functionalized nanotubes was dispensed using an inkjet printer to obtain electrically conductive patterns on paper and plastic surfaces (see picture). Sheet resistivities for the deposited patterns of about 40 kΩ/□ could be achieved by multiple prints.
We present the fabrication and electrical characterization of a flexible hybrid composite structure using aligned multiwall carbon nanotube arrays in a poly(dimethylsiloxane) (PDMS) matrix. Using lithographically patterned nanotube arrays, one can make these structures at any length scale from submicrometer levels to bulk quantities. The PDMS matrix undergoes excellent conformal filling within the dense nanotube network, giving rise to extremely flexible conducting structures with unique electromechanical properties. We demonstrate its robustness against high stress conditions, under which the composite is found to retain its conducting nature. We also demonstrate that these structures can be utilized directly as flexible field-emission devices. Our devices show some of the best field-enhancement factors and turn-on electric fields reported so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.