The conformational possibilities of three different delta-selective opioid peptides, which are DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen), DCFPE (Tyr-D-Cys-Phe-D-Pen), and DRE (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2, dermenkephalin), were explored using energy calculations. Sets of low-energy conformers were obtained for each of these peptides. The sets consisted of 61 structures for DPDPE, 32 for DCFPE, and 38 for DRE, including various types of rotamers of the Tyr and Phe side-chain groups. Comparison of the geometrical shapes of the conformers was performed for these sets using topographical considerations, i.e., examination of the mutual spatial arrangement of the N-terminal alpha-amino group, and of the Tyr and Phe side-chain groups. The results obtained suggest a model for the delta-receptor-bound conformer(s) for opioid peptides. The model suggests the placement of the Phe side chain in a definite position in space corresponding to the g- rotamer of Phe for peptides containing Phe4 and to the t rotamer for peptides containing Phe. The position of the Tyr1 side chain cannot be specified so precisely. The proposed model is in a good agreement with the results of biological testing of beta-Me-Phe4-substituted DPDPE analogues that were not considered in the process of model construction.
The conformationally restricted, cyclic disulfide-containing delta opioid receptor selective enkephalin analogue [D-Pen2,D-Pen5]enkephalin (1, DPDPE) was systematically modified topographically by addition of a methyl group at either the pro-S or pro-R position of the beta carbon of an L-Phe4 or D-Phe4 residue to give [(2S,3S)-beta-MePhe4]DPDPE (2), [(2R,3R)-beta-MePhe4]DPDPE (3), [(2S,3R)-beta-MePhe4]DPDPE (4), and [(2R,3S)-beta-MePhe4]DPDPE (5). The four corresponding isomers were prepared in which the beta-methylphenylalanine residue was p-nitro substituted, that is with a beta-methyl-p-nitrophenylalanine (beta-Me-p-NO2Phe) residue, to give [(2S,3S)-beta-Me-p-NO2Phe4]DPDPE (6), [(2R,3R)-beta-Me-p-NO2Phe4]DPDPE (7), [(2S,3R)-beta-Me-p-NO2Phe4] DPDPE (8), and [(2R,3S)-beta-Me-p-NO2Phe4]DPDPE (9), respectively. The potency and selectivity (delta vs mu opioid receptor) were evaluated by radioreceptor binding assays in the rat brain using [3H]CTOP (mu ligand) and [3H]DPDPE (delta ligand) and by bioassay with mouse vas deferens (MVD, delta receptor assay) and guinea pig ileum (GPI, mu receptor assay). The eight analogues of DPDPE showed highly variable binding and bioassay activities particularly at the delta opioid receptor (4 orders of magnitude), but also at the mu opioid receptor, which led to large differences (3 orders of magnitude) in receptor selectivity. For example, [(2S,3S)-beta-MePhe4]DPDPE (2) is 1800-fold selective in binding to the delta vs mu receptor, making it one of the most selective delta opioid receptor ligands in the enkephalin series as assessed by the rat brain binding assay, whereas the corresponding (2R,3R)-beta-Me-p-NO2Phe-containing analogue 9 is only 4.5-fold selective (nonselective) in this same assay. On the other hand, in the bioassay systems, [(2S,3S)-beta-Me-p-NO2Phe4]DPDPE (5) is more potent than DPDPE and 8800-fold selective for the MVD (delta receptor) vs the GPI (mu receptor), making it the most highly selective ligand in this series for the delta opioid receptor on the basis of these bioassays. In these assay systems, the (2R,3S)-beta-MePhe4-containing analogue 5 had very weak potency and virtually no receptor selectivity (4.4-fold). These results demonstrate that topographical modification alone in a conformationally restricted peptide ligand can significantly modulate both potency and receptor selectivity of peptide ligands that have multiple sites of biological activity and suggest that this approach may have general application to peptide ligand design.
Quenched molecular dynamics is used as a conformational search technique for the constrained cyclic analog [D-Pen2,D-Pen5]enkephalin (DPDPE) in a continuum solvent. The results show a Gaussianlike distribution of conformations as a function of energy, unlike the distributions found for simple liquids which have sharp bands for different crystal forms and broad glasslike states are found. The lowest energy conformers have structural features in common with those obtained from constrained searches based on energy minimization. (Hruby, V. J., L-.F. Kao, B. M. Pettitt, and M. Karplus. 1988. J. Am. Chem. Soc. 110:3351-3359). Many of the low energy configurations are amphiphilic with the carbonyl groups on one surface and the hydrophobic groups on the other. This supports the conclusions from the previous modeling study, which yielded amphiphilic structures as the most probable conformations of DPDPE when NOE data were included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.