Pseudomonas aeruginosa is a frequent cause of respiratory exacerbations in individuals with cystic fibrosis. An important virulence determinant of this pathogen is its type III protein secretion system. In this study, the type III secretion properties of 435 P. aeruginosa respiratory isolates from 56 chronically infected individuals with cystic fibrosis were investigated. Although it had been previously reported that 75 to 90% of P. aeruginosa isolates from patients with hospital-acquired pneumonia secreted type III proteins, only 12% of isolates from cystic fibrosis patients did so, with nearly all of these isolates secreting ExoS and ExoT but not ExoU. Despite the low overall prevalence of type III protein-secreting isolates, at least one secreting isolate was cultured from one-third of cystic fibrosis patients. Interestingly, the fraction of cystic fibrosis patient isolates capable of secreting type III proteins decreased with duration of infection. Although 90% of isolates from the environment, the presumed reservoir for the majority of P. aeruginosa strains that infect patients with cystic fibrosis, secreted type III proteins, only 49% of isolates from newly infected children, 18% of isolates from chronically infected children, and 4% of isolates from chronically infected adults with cystic fibrosis secreted these proteins. Within individual patients, isolates of clonal origin differed in their secretion phenotypes, indicating that as strains persisted in cystic fibrosis patient airways, their type III protein secretion properties changed. Together, these findings indicate that following infection of cystic fibrosis patient airways, P. aeruginosa strains gradually change from a type III protein secretion-positive phenotype to a secretion-negative phenotype.
Disease overview POEMS syndrome is a paraneoplastic syndrome due to an underlying plasma cell neoplasm. The major criteria for the syndrome are polyradiculoneuropathy, clonal plasma cell disorder (PCD), sclerotic bone lesions, elevated vascular endothelial growth factor, and the presence of Castleman disease. Minor features include organomegaly, endocrinopathy, characteristic skin changes, papilledema, extravascular volume overload, and thrombocytosis. Diagnoses are often delayed because the syndrome is rare and can be mistaken for other neurologic disorders, most commonly chronic inflammatory demyelinating polyradiculoneuropathy. POEMS syndrome should be distinguished from the Castleman disease variant of POEMS syndrome, which has no clonal PCD and typically little to no peripheral neuropathy but has several of the minor diagnostic criteria for POEMS syndrome. Diagnosis: The diagnosis of POEMS syndrome is made with three of the major criteria, two of which must include polyradiculoneuropathy and clonal plasma cell disorder, and at least one of the minor criteria. Risk stratification: Because the pathogenesis of the syndrome is not well understood, risk stratification is limited to clinical phenotype rather than specific molecular markers. The number of clinical criteria is not prognostic, but the extent of the plasma cell disorder is. Those patients with an iliac crest bone marrow biopsy that does not reveal a plasma cell clone are candidates for local radiation therapy; those with a more extensive or disseminated clone will be candidates for systemic therapy. Risk‐adapted therapy: For those patients with a dominant sclerotic plasmacytoma, first line therapy is irradiation. Patients with diffuse sclerotic lesions or disseminated bone marrow involvement and for those who have progression of their disease 3 to 6 months after completing radiation therapy should receive systemic therapy. Corticosteroids are temporizing, but alkylators are the mainstay of treatment, either in the form of low dose conventional therapy or high dose with stem cell transplantation. The benefit of anti‐VEGF antibodies is conflicting. Lenalidomide shows promise with manageable toxicity. Thalidomide and bortezomib also have activity, but their benefit needs to be weighed against their risk of exacerbating the peripheral neuropathy. Prompt recognition and institution of both supportive care measures and therapy directed against the plasma cell result in the best outcomes. Am. J. Hematol. 86:592–601, 2011. © 2011 Wiley‐Liss, Inc.
Rationale Aminoglycoside (AG) resistance by Pseudomonas aeruginosa in Cystic Fibrosis is associated with poorer clinical outcomes and is usually due to overexpression of the efflux pump MexXY. MexXY is regulated by mexZ, one of the most commonly mutated genes in CF P. aeruginosa isolates. Little is known about the evolutionary relationship between AG resistance, MexXY expression and mexZ mutations. Objectives To test the hypothesis that AG resistance in P. aeruginosa develops in parallel with higher MexXY expression and mexZ mutations. Methods CF P. aeruginosa isolates were compared for chronically infected (CI) adults, CI children, and children with new infection. Measurements One P. aeruginosa isolate from each patient was analyzed for mexZ mutations, mexY mRNA expression, and amikacin resistance. Main Results Fifty-six CF patients were enrolled: 21 children with new P. aeruginosa infection, 18 CI children, and 17 CI adults. Amikacin resistance and mexY mRNA expression were higher in cohorts with longer P. aeruginosa infection. The prevalence of non-conservative mexZ mutations was 0%, 33%, and 65% in children with new infection, CI children, and CI adults, respectively. The same trend was seen in the ratio of non-conservative to non-synonymous mexZ mutations. Of isolates with non-conservative mexZ mutations, 59% were amikacin- resistant compared to 18% of isolates with non-synonymous mutations. The doubling rate for amikacin resistance and non-conservative mexZ mutations was approximately 5 years. Conclusion P. aeruginosa mexZ mutations undergo positive selection resulting in increased mexY mRNA expression and amikacin resistance and likely play a role in bacterial adaption in the CF lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.