Mutations at the mouse W/c-kit locus lead to intrinsic defects in stem cells of the melanocytic, hematopoietic, and germ cell lineages. W alleles vary in the overall severity of phenotype that they confer, and some alleles exhibit an independence of pleiotropic effects. To elucidate the molecular basis for these biological differences, we analyzed the c-k/t locus and the c-kit.associated autophosphorylation activities in five different W mutants representative of a range of W phenotypes. Mast cell cultures derived from mice or embryos homozygous for each W allele were deficient in c-kit autophosphorylation activity, the extent of which paralleled the severity of phenotype conferred by a given W allele both in vivo and in an in vitro mast cell coculture assay. The mildly dominant, homozygous viable alleles W 44 and W s7 were found to express reduced levels of an apparently normal c-k/t protein. In contrast, c-kit kinase defects conferred by the moderately dominant, homozygous viable alleles W 4~ or W ss or the homozygous lethal allele, W 37, were attributed to single-point mutations within the kinase domain of the c-kit polypeptide, which result in point substitutions of amino acid residues highly conserved in the family of protein tyrosine kinases. The nature and location of these amino acid substitutions account for the relative severity of phenotypes conferred by these W alleles and demonstrate that the pleiotropic developmental defects associated with the W/c-kit locus arise as the result of dominant loss-of-function mutations in a transmembrane receptor tyrosine kinase.
rho factor-mediated transcription termination at the tr1 terminator site of bacteriophage lambda is examined. Mutations affecting the termination event are characterised. These mutations define features of the site which seem to be important to terminator function. In addition, other related transcriptional and translational regulatory elements are defined within the region surrounding the termination site. The potential molecular interactions and structural overlaps of these control signals apparently couple the regulation of the decision between lytic and lysogenic growth patterns by phage lambda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.