Numerous 3D rockfall simulation models use coarse gridded digital terrain model (DTM raster) as their topography input. Artificial surface roughness is often added to overcome the loss of details that occurs during the gridding process. Together with the use of sensitive energy damping parameters, they provide great freedom to the user at the expense of the objectivity of the method. To quantify and limit the range of such artificial values, we developed an impact-detection algorithm that can be used to extract the perceived surface roughness from detailed terrain samples in relation to the size of the impacting rocks. The algorithm can also be combined with a rebound model to perform rockfall simulations directly on detailed 3D point clouds. The abilities of the algorithm are demonstrated by objectively extracting different perceived surface roughnesses from detailed terrain samples and by simulating rockfalls on detailed terrain models as proof of concept. The results produced are also compared to that of rockfall simulation software CRSP 4, RocFall 8 and Rockyfor3D 5.2.15 as validation. Although differences were observed, the validation shows that the algorithm can produce similar results. With the presented approach not being limited to coarse terrain models, the need for adding artificial terrain roughness or for adjusting sensitive damping parameters on a per-site basis is reduced, thereby limiting the related biases and subjectivity.
Abstract. When calculating the risk of railway or road users of being killed by a natural hazard, one has to calculate a temporal spatial probability, i.e. the probability of a vehicle being in the path of the falling mass when the mass falls, or the expected number of affected vehicles in case such of an event. To calculate this, different methods are used in the literature, and, most of the time, they consider only the dimensions of the falling mass or the dimensions of the vehicles. Some authors do however consider both dimensions at the same time, and the use of their approach is recommended. Finally, a method considering an impact on the front of the vehicle is discussed.
A railroad crosses the coastal Gascons rockslide, in Quebec, Canada. This study improves the understanding of the rockslide's failure mechanism and post-failure behaviour responsible for the deformation in the railroad. The slide is an asymmetrical wedge failure of 410,000 m 3 , in rocks made up of centimetrescale beds of nodular calcilutite alternating with sandstones and limestone. The post-failure stage of the rockslide is characterised by continuous movement of blocks with speeds ranging from 6 to 110 mm/year. The main water table is just below the sliding surface, but precipitation and snowmelt can raise it above the sliding surface in the upper part of the slide. We propose a model for the rockslide, its failure mechanism, geometry and hydrogeology to provide a baseline for interpreting the near-real-time data collected since 2009.
Abstract. When calculating the risk of railway or road users to be killed by a natural hazard, one has to calculate a "spatio-temporal probability", i.e. the probability for a vehicle to be in the path of the falling mass when the mass falls, or the expected number of affected vehicles in case of an event. To calculate this, different methods are used in the literature, and, most of the time, they consider only the dimensions of the falling mass or the dimensions of the vehicles. Some authors do however consider both dimensions at the same time, and the use of their approach is recommended. Finally, a method considering an impact on the front of the vehicle in addition is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.