ObjectiveTo report the clinical and investigative features of children with a clinical diagnosis of probable autoimmune encephalopathy, both with and without antibodies to central nervous system antigens.MethodPatients with encephalopathy plus one or more of neuropsychiatric symptoms, seizures, movement disorder or cognitive dysfunction, were identified from 111 paediatric serum samples referred from five tertiary paediatric neurology centres to Oxford for antibody testing in 2007–2010. A blinded clinical review panel identified 48 patients with a diagnosis of probable autoimmune encephalitis whose features are described. All samples were tested/retested for antibodies to N-methyl-D-aspartate receptor (NMDAR), VGKC-complex, LGI1, CASPR2 and contactin-2, GlyR, D1R, D2R, AMPAR, GABA(B)R and glutamic acid decarboxylase.ResultsSeizures (83%), behavioural change (63%), confusion (50%), movement disorder (38%) and hallucinations (25%) were common. 52% required intensive care support for seizure control or profound encephalopathy. An acute infective organism (15%) or abnormal cerebrospinal fluid (32%), EEG (70%) or MRI (37%) abnormalities were found. One 14-year-old girl had an ovarian teratoma. Serum antibodies were detected in 21/48 (44%) patients: NMDAR 13/48 (27%), VGKC-complex 7/48(15%) and GlyR 1/48(2%). Antibody negative patients shared similar clinical features to those who had specific antibodies detected. 18/34 patients (52%) who received immunotherapy made a complete recovery compared to 4/14 (28%) who were not treated; reductions in modified Rankin Scale for children scores were more common following immunotherapies. Antibody status did not appear to influence the treatment effect.ConclusionsOur study outlines the common clinical and paraclinical features of children and adolescents with probable autoimmune encephalopathies. These patients, irrespective of positivity for the known antibody targets, appeared to benefit from immunotherapies and further antibody targets may be defined in the future.
Objective: To evaluate the efficacy and safety of miglustat, concomitant with enzyme replacement therapy (ERT), in patients with Gaucher's disease type 3 (GD3). Methods: This 24-month, phase II, open-label clinical trial of miglustat in GD3 was conducted in two phases. During the initial 12 months, patients were randomized 2:1 to receive miglustat or "no miglustat treatment." The randomized phase was followed by an optional 12-month extension phase in which all patients received miglustat. All patients received ERT during the 24-month period. The primary efficacy end points were change from baseline to months 12 and 24 in vertical saccadic eye movement velocity as determined by the peak amplitude versus amplitude regression line slope. Secondary end points included changes in neurological and neuropsychological assessments, pulmonary function tests, liver and spleen organ volumes, hematological and clinical laboratory assessments, and safety evaluations. Results: Thirty patients were enrolled, of whom 21 were randomized to miglustat and 9 to "no miglustat treatment." Twentyeight patients entered the 12-month extension phase. No significant between-group differences in vertical saccadic eye movement velocity or in the other neurological or neuropsychological evaluations were observed. Organ volumes and hematological parameters remained stable in both treatment groups, but improvement in pulmonary function and decrease of chitotriosidase levels were observed with miglustat compared with patients receiving ERT alone. Interpretation: Miglustat does not appear to have significant benefits on the neurological manifestations of GD3. However, miglustat may have positive effects on systemic disease (pulmonary function and chitotriosidase activity) in addition to ERT in patients with GD3.
Trio sequencing with expert multidisciplinary review for case selection and data interpretation yields timely, high diagnostic rates in fetuses presenting with unexpected skeletal abnormalities. This improves parental counseling and pregnancy management.
Objective:To define a distinct SCN1A developmental and epileptic encephalopathy with early onset, profound impairment, and movement disorder.Methods:A case series of 9 children were identified with a profound developmental and epileptic encephalopathy and SCN1A mutation.Results:We identified 9 children 3 to 12 years of age; 7 were male. Seizure onset was at 6 to 12 weeks with hemiclonic seizures, bilateral tonic-clonic seizures, or spasms. All children had profound developmental impairment and were nonverbal and nonambulatory, and 7 of 9 required a gastrostomy. A hyperkinetic movement disorder occurred in all and was characterized by dystonia and choreoathetosis with prominent oral dyskinesia and onset from 2 to 20 months of age. Eight had a recurrent missense SCN1A mutation, p.Thr226Met. The remaining child had the missense mutation p.Pro1345Ser. The mutation arose de novo in 8 of 9; for the remaining case, the mother was negative and the father was unavailable.Conclusions:Here, we present a phenotype-genotype correlation for SCN1A. We describe a distinct SCN1A phenotype, early infantile SCN1A encephalopathy, which is readily distinguishable from the well-recognized entities of Dravet syndrome and genetic epilepsy with febrile seizures plus. This disorder has an earlier age at onset, profound developmental impairment, and a distinctive hyperkinetic movement disorder, setting it apart from Dravet syndrome. Remarkably, 8 of 9 children had the recurrent missense mutation p.Thr226Met.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.