Apert syndrome is a distinctive human malformation comprising craniosynostosis and severe syndactyly of the hands and feet. We have identified specific missense substitutions involving adjacent amino acids (Ser252Trp and Pro253Arg) in the linker between the second and third extracellular immunoglobulin (Ig) domains of fibroblast growth factor receptor 2 (FGFR2) in all 40 unrelated cases of Apert syndrome studied. Crouzon syndrome, characterized by craniosynostosis but normal limbs, was previously shown to result from allelic mutations of the third Ig domain of FGFR2. The contrasting effects of these mutations provide a genetic resource for dissecting the complex effects of signal transduction through FGFRs in cranial and limb morphogenesis.
Salmonella causes severe gastroenteritis in humans, entering non-phagocytic cells to initiate intracellular replication. Bacterial engulfment occurs by macropinocytosis, which is dependent upon nucleation of host cell actin polymerization and condensation ('bundling') of actin filaments into cables. This is stimulated by contact-induced delivery of an array of bacterial effector proteins, including the four Sips (Salmonella invasion proteins). Here we show in vitro that SipC bundles actin filaments independently of host cell components, a previously unknown pathogen activity. Bundling is directed by the SipC N-terminal domain, while additionally the C-terminal domain nucleates actin polymerization, an activity so far known only in eukaryotic proteins. The ability of SipC to cause actin condensation and cytoskeletal rearrangements was confirmed in vivo by microinjection into cultured cells, although as SipC associates with lipid bilayers it is possible that these activities are normally directed from the host cell membrane. The data suggest a novel mechanism by which a pathogen directly modulates the cytoskeletal architecture of mammalian target cells.
Seventy-five children treated for craniopharyngioma between 1973 and 1994 were studied to demonstrate which pre- and intraoperative factors were indicative of a poor outcome as defined by a quantitative assessment of morbidity. This involved a retrospective review of 65 patients and a prospective study of 10 patients focused on clinical details and cranial imaging and a follow-up "study assessment" of 66 survivors performed over the last 2 years. As part of the assessment, 63 patients underwent magnetic resonance imaging with a three-dimensional volume acquisition sequence 1.5 to 19.2 years after initial surgery. Predictors of high morbidity included severe hydrocephalus, intraoperative adverse events, and young age ( < or = 5 years) at presentation. Predictors of increased hypothalamic morbidity included symptoms of hypothalamic disturbance already established at diagnosis, greater height ( > or = 3.5 cm) of the tumor in the midline, and attempts to remove adherent tumor from the region of the hypothalamus at operation. Large tumor size, young age, and severe hydrocephalus were predictors of tumor recurrence, whereas complete tumor resection (as determined by postoperative neuroimaging) and radiotherapy given electively after subtotal excision were less likely to be associated with recurrent disease. Based on these findings, the authors propose an individualized, more flexible treatment approach whereby surgical strategies may be modified to provide long-term tumor control with the lowest morbidity.
Mutations in the fibroblast growth factor receptor 2 (FGFR2) gene have been identified in Crouzon syndrome, an autosomal dominant condition causing premature fusion of the cranial sutures (craniosynostosis). A mutation in FGFR1 has been established in several families with Pfeiffer syndrome, where craniosynostosis is associated with specific digital abnormalities. We now report point mutations in FGFR2 in seven sporadic Pfeiffer syndrome patients. Six of the seven Pfeiffer syndrome patients share two missense mutations, which have also been reported in Crouzon syndrome. The Crouzon and Pfeiffer phenotypes usually breed true within families and the finding of identical mutations in unrelated individuals giving different phenotypes is a highly unexpected observation.
Pathogen‐induced remodelling of the host cell actin cytoskeleton drives internalization of invasive Salmonella by non‐phagocytic intestinal epithelial cells. Two Salmonella actin‐binding proteins are involved in internalization: SipC is essential for the process, while SipA enhances its efficiency. Using purified SipC and SipA proteins in in vitro assays of actin dynamics and F‐actin bundling, we demonstrate that SipA stimulates substantially SipC‐mediated nucleation of actin polymerization. SipA additionally enhances SipC‐ mediated F‐actin bundling, and SipC–SipA collaboration generates stable networks of F‐actin bundles. The data show that bacterial SipC and SipA cooperate to direct efficient modulation of actin dynamics, independently of host cell proteins. The ability of SipA to enhance SipC‐induced reorganization of the actin cytoskeleton in vivo was confirmed using semi‐ permeabilized cultured mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.