Drywall finishing is a dusty construction activity. We describe a mathematical model that predicts the time-weighted average concentration of respirable and total dusts in the personal breathing zone of the sander, and in the area surrounding joint compound sanding activities. The model represents spatial variation in dust concentrations using two-zones, and temporal variation using an exponential function. Interzone flux and the relationships between respirable and total dusts are described using empirical factors. For model evaluation, we measured dust concentrations in two field studies, including three workers from a commercial contracting crew, and one unskilled worker. Data from the field studies confirm that the model assumptions and parameterization are reasonable and thus validate the modeling approach. Predicted dust C(twa) were in concordance with measured values for the contracting crew, but under estimated measured values for the unskilled worker. Further characterization of skill-related exposure factors is indicated.
This study assessed a professional pipefitter/welder performing shielded metal arc welding on carbon steel under field conditions. The resulting breathing zone (near field) and area (far field) welding fume concentration data were applied to the two-zone model for the purpose of determining field-derived personal exposure emission (generation) rates during actual welding work. The study is unique in that one welder was evaluated under high production conditions for 2 days at two different welding locations: a boiler room and a breezeway. Samples were collected and analyzed for total particulate following NIOSH Method 0500 and for select metals following NIOSH Method 7300. Breezeway average personal breathing zone sample total particulate concentrations ranged from 2.89 mg/m(3) to 4.38 mg/m(3), Fe concentrations ranged from 0.53 to 0.63 mg/m(3), and Mn concentrations ranged from 0.10 to 0.12 mg/m(3). The boiler room average personal breathing zone sample total particulate concentrations ranged from 4.73 mg/m(3) to 5.90 mg/m(3), Fe concentrations ranged from 0.48 to 0.85 mg/m(3), and Mn concentrations ranged from 0.06 to 0.16 mg/m(3). Average arc times ranged from 20 to 25% of the total sampling time. Both tracer gas and anemometer techniques were used to estimate ventilation of the boiler room. The steady-state form of the two-zone model was applied to long-term and short-term sample total particulate, Fe, and Mn concentrations obtained during welding in the boiler room and breezeway. The average generation rate in the boiler room was 39.2 mg/min for TP, 6.4 mg/min for Fe, and 1.3 mg/min for Mn. The average generation rate in the breezeway was 40.0 mg/min for TP, 6.6 mg/min for Fe, and 1.2 mg/min for Mn. The field-based generation rates were considerably lower than laboratory-derived published emission rates of between 280 and 650 mg/min for TP. This study emphasizes the need for field-derived welding fume generation rates and showed the personal breathing zone and area sample concentrations can be described by the two-zone model in a way that may help the industrial hygienist estimate exposures. [Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Occupational and Environmental Hygiene for the following free supplemental resource: Tables detailing the personal breathing zone and average area sample results for breezeway welding and boiler room welding, two-zone modeling results, and boiler room welding personal breathing zone and area sample results with mixing fans on.].
This study on four pieces of heavy construction equipment was conducted to determine the concentration of airborne asbestos fibers during in-frame maintenance and repair activities, which included aggressive techniques that resulted in visible dust from work involving friction products and gaskets. Despite execution of a carefully planned sampling strategy, approximately 10% (47) of the samples collected could not be analyzed due to overloading or filter damage. To include the overloaded samples in the data analysis, surrogate values were estimated following a time-activity model. Twelve long-term personal samples, 2 short-term, 30-min personal samples, and 31 long-term area samples were modeled. Personal and area time-weighted average (TWA) data were analyzed both with and without the estimated surrogate values and compared. A total of 444 samples were collected over 9 days. Four experienced heavy equipment mechanics removed and replaced friction products and gaskets. Samples were analyzed using NIOSH Method 7400 Phase Contrast Microscopy followed by NIOSH Method 7402 Transmission Electron Microscopy. Sample data information including the surrogate values for the full-shift, TWA personal sample results ranged from 0.002 to 0.064 asbestos f/cc. Personal, short-term, 30-min sample results, including the two surrogate values, ranged from 0.038 to 0.561 asbestos f/cc. Full-shift TWA area samples, including the 31 surrogate values, ranged from 0.005 to 0.039 asbestos f/cc. Area air sample results at the end of the project were similar to levels measured before the start of the project. No fiber concentration buildup within the work area was indicated over the 9-day study. All full-shift personal and area TWA sample results were below 0.1 f/cc, and short-term 30-min personal samples were below 1.0 f/cc. Statistical results of the sample data with and without the surrogate values were consistent. Use of the time-activity model reduced the uncertainty associated with this data analysis and provided a consistent logical process for estimating surrogate values to replace missing data.
Sanding drywall joint compound is a dusty construction activity. We studied potential factors influencing exposure to respirable and total dust for sanders and bystanders in the area of drywall joint compound finishing in 17 test events within a room-scale isolation chamber. We found the air change rate to be negatively correlated with dust C(twa) both in the sander's personal breathing zone and surrounding area. We could not conclude that sanding tool type systematically influences dust C(twa), but the use of 80-grit abrasive was associated with the highest dust C(twa). We found respirable dusts were uniformly dispersed 1-8.2 m from sanding activities at a fixed location. As anticipated, both respirable and total dust C(twa) in the sander's personal breathing zone are higher than in the surrounding area. The respirable fraction of the total dust mass C(twa) was greater in the surrounding area than in the sander's personal breathing zone. Respirable dust concentrations measured in real time increased over the duration of sanding, exhibiting a temporal trend that is similar to that predicted by the well-mixed box model with contaminant removal by mechanical ventilation only, and continuous emission. Dust concentrations returned to pre-activity (background) levels 2-4 hr after cessation of the sanding activity.
Supplemental Digital Content is Available in the Text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.