The two human trypsinogens have been isolated from human pancreatic juice in a sufficient amount to study molecular and structural properties. The purification procedure included filtration on Sephadex G-100 followed by ion-exchange chromatography on DEAE-cellulose. The two trypsinogens represent 19% of total proteins of pancreatic juice. Trypsinogen 1, the major form, is present in a quantity twice that of trypsinogen 2, which is the most anionic protein in human pancreatic juice. The two proteins have partial immunological identity, close molecular weights (23 438 and 25 006 for trypsinogens 1 and 2, respectively) and similar amino acid compositions. The N-terminal sequences are the same for the first 9 residues: Ala-Pro-Phe-Asp4-Lys-Ile. The two proteins differ in the activation peptides released during the transformation to trypsins. Trypsinogen 2 liberates one octapeptide Ala-Pro-Phe-Asp4-Lys while trypsinogen 1 liberates two peptides, the same octapeptide and the pentapeptide (Asp)4-Lys.
Glycosylated PEI appears to be a promising gene delivery system since it is more efficient than the sugar-free polymer and does not require endosomolytic agents. However, in differentiated airway gland serous cells, a low gene transfer efficiency was observed that could not be attributed to low expression of membrane lectins or low uptake of glycosylated complexes. An impaired intracellular trafficking of glycosylated complexes in differentiated airway gland serous cells is suggested.
A fetoacinar pancreatic protein (FAP) associated with the ontogenesis, differentiation and oncogenic transformation of the human exocrine pancreas has been purified from pancreatic juices of patients suffering from pancreatitis or duodenal cancers invading the pancreas [Escribano and Imperial (1989) J. Biol. Chem. 264, 21865-21871]. This protein has striking similarities, i.e. M(r), amino acid composition and N-terminal sequence, to the bile-salt-dependent lipase (BSDL) of normal human pancreatic secretion. The aim of this study was to gain further insight into the nature of the two proteins. Reactivity with the mouse monoclonal antibody J28 (mAb J28), which characterizes FAP, and enzyme activity could not be dissociated during biochemical purification of BSDL. Furthermore, a polyclonal antiserum raised against purified human BSDL reacted completely with FAP in Western-blot analysis giving additional support to the idea of similar molecular structures for BSDL and FAP. However, by the same technique, mAb J28 reacted with a relatively restricted population of BSDL molecules. The classical BSDL preparation could be separated into molecules bearing the J28 epitope and those devoid of it by immunoaffinity on immobilized mAb J28. The two subpopulations had identical N-terminal sequences and some differences in their amino acid compositions. However, they had different carbohydrate compositions. J28-epitope-bearing molecules were active on BSDL substrates, although their specific activity was decreased. These results are consistent with the existence of two closely related polypeptide chains with different glycan counterparts. Therefore, if the name FAP is reserved for molecules bearing the J28 epitope, which is linked to a carbohydrate-dependent structure. FAP could represent an oncofetal-related variant of BSDL. Our result is the first demonstration of the existence of an oncofetal-type subpopulation of an otherwise normally secreted human pancreatic enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.